# HG changeset patch # User ballarin # Date 1274901618 -7200 # Node ID 29bd6c2ffba859520a2ff12bb6440246c9021f41 # Parent 1d048c6940c867bba8527a69147173c9f03dbc9b Revise locale test theory layout. diff -r 1d048c6940c8 -r 29bd6c2ffba8 src/FOL/IsaMakefile --- a/src/FOL/IsaMakefile Wed May 26 21:20:18 2010 +0200 +++ b/src/FOL/IsaMakefile Wed May 26 21:20:18 2010 +0200 @@ -46,7 +46,9 @@ $(LOG)/FOL-ex.gz: $(OUT)/FOL ex/First_Order_Logic.thy ex/If.thy \ ex/Iff_Oracle.thy ex/Nat.thy ex/Nat_Class.thy ex/Natural_Numbers.thy \ - ex/LocaleTest.thy ex/Miniscope.thy ex/Prolog.thy ex/ROOT.ML \ + ex/Locale_Test/Locale_Test.thy ex/Locale_Test/Locale_Test1.thy \ + ex/Locale_Test/Locale_Test2.thy ex/Locale_Test/Locale_Test3.thy \ + ex/Miniscope.thy ex/Prolog.thy ex/ROOT.ML \ ex/Classical.thy ex/document/root.tex ex/Foundation.thy \ ex/Intuitionistic.thy ex/Intro.thy ex/Propositional_Int.thy \ ex/Propositional_Cla.thy ex/Quantifiers_Int.thy \ diff -r 1d048c6940c8 -r 29bd6c2ffba8 src/FOL/ex/LocaleTest.thy --- a/src/FOL/ex/LocaleTest.thy Wed May 26 21:20:18 2010 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,712 +0,0 @@ -(* Title: FOL/ex/LocaleTest.thy - Author: Clemens Ballarin, TU Muenchen - -Test environment for the locale implementation. -*) - -theory LocaleTest -imports FOL -begin - -typedecl int arities int :: "term" -consts plus :: "int => int => int" (infixl "+" 60) - zero :: int ("0") - minus :: "int => int" ("- _") - -axioms - int_assoc: "(x + y::int) + z = x + (y + z)" - int_zero: "0 + x = x" - int_minus: "(-x) + x = 0" - int_minus2: "-(-x) = x" - -section {* Inference of parameter types *} - -locale param1 = fixes p -print_locale! param1 - -locale param2 = fixes p :: 'b -print_locale! param2 - -(* -locale param_top = param2 r for r :: "'b :: {}" - Fails, cannot generalise parameter. -*) - -locale param3 = fixes p (infix ".." 50) -print_locale! param3 - -locale param4 = fixes p :: "'a => 'a => 'a" (infix ".." 50) -print_locale! param4 - - -subsection {* Incremental type constraints *} - -locale constraint1 = - fixes prod (infixl "**" 65) - assumes l_id: "x ** y = x" - assumes assoc: "(x ** y) ** z = x ** (y ** z)" -print_locale! constraint1 - -locale constraint2 = - fixes p and q - assumes "p = q" -print_locale! constraint2 - - -section {* Inheritance *} - -locale semi = - fixes prod (infixl "**" 65) - assumes assoc: "(x ** y) ** z = x ** (y ** z)" -print_locale! semi thm semi_def - -locale lgrp = semi + - fixes one and inv - assumes lone: "one ** x = x" - and linv: "inv(x) ** x = one" -print_locale! lgrp thm lgrp_def lgrp_axioms_def - -locale add_lgrp = semi "op ++" for sum (infixl "++" 60) + - fixes zero and neg - assumes lzero: "zero ++ x = x" - and lneg: "neg(x) ++ x = zero" -print_locale! add_lgrp thm add_lgrp_def add_lgrp_axioms_def - -locale rev_lgrp = semi "%x y. y ++ x" for sum (infixl "++" 60) -print_locale! rev_lgrp thm rev_lgrp_def - -locale hom = f: semi f + g: semi g for f and g -print_locale! hom thm hom_def - -locale perturbation = semi + d: semi "%x y. delta(x) ** delta(y)" for delta -print_locale! perturbation thm perturbation_def - -locale pert_hom = d1: perturbation f d1 + d2: perturbation f d2 for f d1 d2 -print_locale! pert_hom thm pert_hom_def - -text {* Alternative expression, obtaining nicer names in @{text "semi f"}. *} -locale pert_hom' = semi f + d1: perturbation f d1 + d2: perturbation f d2 for f d1 d2 -print_locale! pert_hom' thm pert_hom'_def - - -section {* Syntax declarations *} - -locale logic = - fixes land (infixl "&&" 55) - and lnot ("-- _" [60] 60) - assumes assoc: "(x && y) && z = x && (y && z)" - and notnot: "-- (-- x) = x" -begin - -definition lor (infixl "||" 50) where - "x || y = --(-- x && -- y)" - -end -print_locale! logic - -locale use_decl = logic + semi "op ||" -print_locale! use_decl thm use_decl_def - -locale extra_type = - fixes a :: 'a - and P :: "'a => 'b => o" -begin - -definition test :: "'a => o" where - "test(x) <-> (ALL b. P(x, b))" - -end - -term extra_type.test thm extra_type.test_def - -interpretation var?: extra_type "0" "%x y. x = 0" . - -thm var.test_def - - -text {* Under which circumstances term syntax remains active. *} - -locale "syntax" = - fixes p1 :: "'a => 'b" - and p2 :: "'b => o" -begin - -definition d1 :: "'a => o" where "d1(x) <-> ~ p2(p1(x))" -definition d2 :: "'b => o" where "d2(x) <-> ~ p2(x)" - -thm d1_def d2_def - -end - -thm syntax.d1_def syntax.d2_def - -locale syntax' = "syntax" p1 p2 for p1 :: "'a => 'a" and p2 :: "'a => o" -begin - -thm d1_def d2_def (* should print as "d1(?x) <-> ..." and "d2(?x) <-> ..." *) - -ML {* - fun check_syntax ctxt thm expected = - let - val obtained = PrintMode.setmp [] (Display.string_of_thm ctxt) thm; - in - if obtained <> expected - then error ("Theorem syntax '" ^ obtained ^ "' obtained, but '" ^ expected ^ "' expected.") - else () - end; -*} - -ML {* - check_syntax @{context} @{thm d1_def} "d1(?x) <-> ~ p2(p1(?x))"; - check_syntax @{context} @{thm d2_def} "d2(?x) <-> ~ p2(?x)"; -*} - -end - -locale syntax'' = "syntax" p3 p2 for p3 :: "'a => 'b" and p2 :: "'b => o" -begin - -thm d1_def d2_def - (* should print as "syntax.d1(p3, p2, ?x) <-> ..." and "d2(?x) <-> ..." *) - -ML {* - check_syntax @{context} @{thm d1_def} "syntax.d1(p3, p2, ?x) <-> ~ p2(p3(?x))"; - check_syntax @{context} @{thm d2_def} "d2(?x) <-> ~ p2(?x)"; -*} - -end - - -section {* Foundational versions of theorems *} - -thm logic.assoc -thm logic.lor_def - - -section {* Defines *} - -locale logic_def = - fixes land (infixl "&&" 55) - and lor (infixl "||" 50) - and lnot ("-- _" [60] 60) - assumes assoc: "(x && y) && z = x && (y && z)" - and notnot: "-- (-- x) = x" - defines "x || y == --(-- x && -- y)" -begin - -thm lor_def - -lemma "x || y = --(-- x && --y)" - by (unfold lor_def) (rule refl) - -end - -(* Inheritance of defines *) - -locale logic_def2 = logic_def -begin - -lemma "x || y = --(-- x && --y)" - by (unfold lor_def) (rule refl) - -end - - -section {* Notes *} - -(* A somewhat arcane homomorphism example *) - -definition semi_hom where - "semi_hom(prod, sum, h) <-> (ALL x y. h(prod(x, y)) = sum(h(x), h(y)))" - -lemma semi_hom_mult: - "semi_hom(prod, sum, h) ==> h(prod(x, y)) = sum(h(x), h(y))" - by (simp add: semi_hom_def) - -locale semi_hom_loc = prod: semi prod + sum: semi sum - for prod and sum and h + - assumes semi_homh: "semi_hom(prod, sum, h)" - notes semi_hom_mult = semi_hom_mult [OF semi_homh] - -thm semi_hom_loc.semi_hom_mult -(* unspecified, attribute not applied in backgroud theory !!! *) - -lemma (in semi_hom_loc) "h(prod(x, y)) = sum(h(x), h(y))" - by (rule semi_hom_mult) - -(* Referring to facts from within a context specification *) - -lemma - assumes x: "P <-> P" - notes y = x - shows True .. - - -section {* Theorem statements *} - -lemma (in lgrp) lcancel: - "x ** y = x ** z <-> y = z" -proof - assume "x ** y = x ** z" - then have "inv(x) ** x ** y = inv(x) ** x ** z" by (simp add: assoc) - then show "y = z" by (simp add: lone linv) -qed simp -print_locale! lgrp - - -locale rgrp = semi + - fixes one and inv - assumes rone: "x ** one = x" - and rinv: "x ** inv(x) = one" -begin - -lemma rcancel: - "y ** x = z ** x <-> y = z" -proof - assume "y ** x = z ** x" - then have "y ** (x ** inv(x)) = z ** (x ** inv(x))" - by (simp add: assoc [symmetric]) - then show "y = z" by (simp add: rone rinv) -qed simp - -end -print_locale! rgrp - - -subsection {* Patterns *} - -lemma (in rgrp) - assumes "y ** x = z ** x" (is ?a) - shows "y = z" (is ?t) -proof - - txt {* Weird proof involving patterns from context element and conclusion. *} - { - assume ?a - then have "y ** (x ** inv(x)) = z ** (x ** inv(x))" - by (simp add: assoc [symmetric]) - then have ?t by (simp add: rone rinv) - } - note x = this - show ?t by (rule x [OF `?a`]) -qed - - -section {* Interpretation between locales: sublocales *} - -sublocale lgrp < right: rgrp -print_facts -proof unfold_locales - { - fix x - have "inv(x) ** x ** one = inv(x) ** x" by (simp add: linv lone) - then show "x ** one = x" by (simp add: assoc lcancel) - } - note rone = this - { - fix x - have "inv(x) ** x ** inv(x) = inv(x) ** one" - by (simp add: linv lone rone) - then show "x ** inv(x) = one" by (simp add: assoc lcancel) - } -qed - -(* effect on printed locale *) - -print_locale! lgrp - -(* use of derived theorem *) - -lemma (in lgrp) - "y ** x = z ** x <-> y = z" - apply (rule rcancel) - done - -(* circular interpretation *) - -sublocale rgrp < left: lgrp -proof unfold_locales - { - fix x - have "one ** (x ** inv(x)) = x ** inv(x)" by (simp add: rinv rone) - then show "one ** x = x" by (simp add: assoc [symmetric] rcancel) - } - note lone = this - { - fix x - have "inv(x) ** (x ** inv(x)) = one ** inv(x)" - by (simp add: rinv lone rone) - then show "inv(x) ** x = one" by (simp add: assoc [symmetric] rcancel) - } -qed - -(* effect on printed locale *) - -print_locale! rgrp -print_locale! lgrp - - -(* Duality *) - -locale order = - fixes less :: "'a => 'a => o" (infix "<<" 50) - assumes refl: "x << x" - and trans: "[| x << y; y << z |] ==> x << z" - -sublocale order < dual: order "%x y. y << x" - apply unfold_locales apply (rule refl) apply (blast intro: trans) - done - -print_locale! order (* Only two instances of order. *) - -locale order' = - fixes less :: "'a => 'a => o" (infix "<<" 50) - assumes refl: "x << x" - and trans: "[| x << y; y << z |] ==> x << z" - -locale order_with_def = order' -begin - -definition greater :: "'a => 'a => o" (infix ">>" 50) where - "x >> y <-> y << x" - -end - -sublocale order_with_def < dual: order' "op >>" - apply unfold_locales - unfolding greater_def - apply (rule refl) apply (blast intro: trans) - done - -print_locale! order_with_def -(* Note that decls come after theorems that make use of them. *) - - -(* locale with many parameters --- - interpretations generate alternating group A5 *) - - -locale A5 = - fixes A and B and C and D and E - assumes eq: "A <-> B <-> C <-> D <-> E" - -sublocale A5 < 1: A5 _ _ D E C -print_facts - using eq apply (blast intro: A5.intro) done - -sublocale A5 < 2: A5 C _ E _ A -print_facts - using eq apply (blast intro: A5.intro) done - -sublocale A5 < 3: A5 B C A _ _ -print_facts - using eq apply (blast intro: A5.intro) done - -(* Any even permutation of parameters is subsumed by the above. *) - -print_locale! A5 - - -(* Free arguments of instance *) - -locale trivial = - fixes P and Q :: o - assumes Q: "P <-> P <-> Q" -begin - -lemma Q_triv: "Q" using Q by fast - -end - -sublocale trivial < x: trivial x _ - apply unfold_locales using Q by fast - -print_locale! trivial - -context trivial begin thm x.Q [where ?x = True] end - -sublocale trivial < y: trivial Q Q - by unfold_locales - (* Succeeds since previous interpretation is more general. *) - -print_locale! trivial (* No instance for y created (subsumed). *) - - -subsection {* Sublocale, then interpretation in theory *} - -interpretation int?: lgrp "op +" "0" "minus" -proof unfold_locales -qed (rule int_assoc int_zero int_minus)+ - -thm int.assoc int.semi_axioms - -interpretation int2?: semi "op +" - by unfold_locales (* subsumed, thm int2.assoc not generated *) - -ML {* (PureThy.get_thms @{theory} "int2.assoc"; - error "thm int2.assoc was generated") - handle ERROR "Unknown fact \"int2.assoc\"" => ([]:thm list); *} - -thm int.lone int.right.rone - (* the latter comes through the sublocale relation *) - - -subsection {* Interpretation in theory, then sublocale *} - -interpretation fol: logic "op +" "minus" - by unfold_locales (rule int_assoc int_minus2)+ - -locale logic2 = - fixes land (infixl "&&" 55) - and lnot ("-- _" [60] 60) - assumes assoc: "(x && y) && z = x && (y && z)" - and notnot: "-- (-- x) = x" -begin - -definition lor (infixl "||" 50) where - "x || y = --(-- x && -- y)" - -end - -sublocale logic < two: logic2 - by unfold_locales (rule assoc notnot)+ - -thm fol.two.assoc - - -subsection {* Declarations and sublocale *} - -locale logic_a = logic -locale logic_b = logic - -sublocale logic_a < logic_b - by unfold_locales - - -subsection {* Equations *} - -locale logic_o = - fixes land (infixl "&&" 55) - and lnot ("-- _" [60] 60) - assumes assoc_o: "(x && y) && z <-> x && (y && z)" - and notnot_o: "-- (-- x) <-> x" -begin - -definition lor_o (infixl "||" 50) where - "x || y <-> --(-- x && -- y)" - -end - -interpretation x: logic_o "op &" "Not" - where bool_logic_o: "logic_o.lor_o(op &, Not, x, y) <-> x | y" -proof - - show bool_logic_o: "PROP logic_o(op &, Not)" by unfold_locales fast+ - show "logic_o.lor_o(op &, Not, x, y) <-> x | y" - by (unfold logic_o.lor_o_def [OF bool_logic_o]) fast -qed - -thm x.lor_o_def bool_logic_o - -lemma lor_triv: "z <-> z" .. - -lemma (in logic_o) lor_triv: "x || y <-> x || y" by fast - -thm lor_triv [where z = True] (* Check strict prefix. *) - x.lor_triv - - -subsection {* Inheritance of mixins *} - -locale reflexive = - fixes le :: "'a => 'a => o" (infix "\" 50) - assumes refl: "x \ x" -begin - -definition less (infix "\" 50) where "x \ y <-> x \ y & x ~= y" - -end - -consts - gle :: "'a => 'a => o" gless :: "'a => 'a => o" - gle' :: "'a => 'a => o" gless' :: "'a => 'a => o" - -axioms - grefl: "gle(x, x)" gless_def: "gless(x, y) <-> gle(x, y) & x ~= y" - grefl': "gle'(x, x)" gless'_def: "gless'(x, y) <-> gle'(x, y) & x ~= y" - -text {* Setup *} - -locale mixin = reflexive -begin -lemmas less_thm = less_def -end - -interpretation le: mixin gle where "reflexive.less(gle, x, y) <-> gless(x, y)" -proof - - show "mixin(gle)" by unfold_locales (rule grefl) - note reflexive = this[unfolded mixin_def] - show "reflexive.less(gle, x, y) <-> gless(x, y)" - by (simp add: reflexive.less_def[OF reflexive] gless_def) -qed - -text {* Mixin propagated along the locale hierarchy *} - -locale mixin2 = mixin -begin -lemmas less_thm2 = less_def -end - -interpretation le: mixin2 gle - by unfold_locales - -thm le.less_thm2 (* mixin applied *) -lemma "gless(x, y) <-> gle(x, y) & x ~= y" - by (rule le.less_thm2) - -text {* Mixin does not leak to a side branch. *} - -locale mixin3 = reflexive -begin -lemmas less_thm3 = less_def -end - -interpretation le: mixin3 gle - by unfold_locales - -thm le.less_thm3 (* mixin not applied *) -lemma "reflexive.less(gle, x, y) <-> gle(x, y) & x ~= y" by (rule le.less_thm3) - -text {* Mixin only available in original context *} - -locale mixin4_base = reflexive - -locale mixin4_mixin = mixin4_base - -interpretation le: mixin4_mixin gle - where "reflexive.less(gle, x, y) <-> gless(x, y)" -proof - - show "mixin4_mixin(gle)" by unfold_locales (rule grefl) - note reflexive = this[unfolded mixin4_mixin_def mixin4_base_def mixin_def] - show "reflexive.less(gle, x, y) <-> gless(x, y)" - by (simp add: reflexive.less_def[OF reflexive] gless_def) -qed - -locale mixin4_copy = mixin4_base -begin -lemmas less_thm4 = less_def -end - -locale mixin4_combined = le1: mixin4_mixin le' + le2: mixin4_copy le for le' le -begin -lemmas less_thm4' = less_def -end - -interpretation le4: mixin4_combined gle' gle - by unfold_locales (rule grefl') - -thm le4.less_thm4' (* mixin not applied *) -lemma "reflexive.less(gle, x, y) <-> gle(x, y) & x ~= y" - by (rule le4.less_thm4') - -text {* Inherited mixin applied to new theorem *} - -locale mixin5_base = reflexive - -locale mixin5_inherited = mixin5_base - -interpretation le5: mixin5_base gle - where "reflexive.less(gle, x, y) <-> gless(x, y)" -proof - - show "mixin5_base(gle)" by unfold_locales - note reflexive = this[unfolded mixin5_base_def mixin_def] - show "reflexive.less(gle, x, y) <-> gless(x, y)" - by (simp add: reflexive.less_def[OF reflexive] gless_def) -qed - -interpretation le5: mixin5_inherited gle - by unfold_locales - -lemmas (in mixin5_inherited) less_thm5 = less_def - -thm le5.less_thm5 (* mixin applied *) -lemma "gless(x, y) <-> gle(x, y) & x ~= y" - by (rule le5.less_thm5) - -text {* Mixin pushed down to existing inherited locale *} - -locale mixin6_base = reflexive - -locale mixin6_inherited = mixin5_base - -interpretation le6: mixin6_base gle - by unfold_locales -interpretation le6: mixin6_inherited gle - by unfold_locales -interpretation le6: mixin6_base gle - where "reflexive.less(gle, x, y) <-> gless(x, y)" -proof - - show "mixin6_base(gle)" by unfold_locales - note reflexive = this[unfolded mixin6_base_def mixin_def] - show "reflexive.less(gle, x, y) <-> gless(x, y)" - by (simp add: reflexive.less_def[OF reflexive] gless_def) -qed - -lemmas (in mixin6_inherited) less_thm6 = less_def - -thm le6.less_thm6 (* mixin applied *) -lemma "gless(x, y) <-> gle(x, y) & x ~= y" - by (rule le6.less_thm6) - -text {* Existing mixin inherited through sublocale relation *} - -locale mixin7_base = reflexive - -locale mixin7_inherited = reflexive - -interpretation le7: mixin7_base gle - where "reflexive.less(gle, x, y) <-> gless(x, y)" -proof - - show "mixin7_base(gle)" by unfold_locales - note reflexive = this[unfolded mixin7_base_def mixin_def] - show "reflexive.less(gle, x, y) <-> gless(x, y)" - by (simp add: reflexive.less_def[OF reflexive] gless_def) -qed - -interpretation le7: mixin7_inherited gle - by unfold_locales - -lemmas (in mixin7_inherited) less_thm7 = less_def - -thm le7.less_thm7 (* before, mixin not applied *) -lemma "reflexive.less(gle, x, y) <-> gle(x, y) & x ~= y" - by (rule le7.less_thm7) - -sublocale mixin7_inherited < mixin7_base - by unfold_locales - -lemmas (in mixin7_inherited) less_thm7b = less_def - -thm le7.less_thm7b (* after, mixin applied *) -lemma "gless(x, y) <-> gle(x, y) & x ~= y" - by (rule le7.less_thm7b) - - -subsection {* Interpretation in proofs *} - -lemma True -proof - interpret "local": lgrp "op +" "0" "minus" - by unfold_locales (* subsumed *) - { - fix zero :: int - assume "!!x. zero + x = x" "!!x. (-x) + x = zero" - then interpret local_fixed: lgrp "op +" zero "minus" - by unfold_locales - thm local_fixed.lone - } - assume "!!x zero. zero + x = x" "!!x zero. (-x) + x = zero" - then interpret local_free: lgrp "op +" zero "minus" for zero - by unfold_locales - thm local_free.lone [where ?zero = 0] -qed - -end diff -r 1d048c6940c8 -r 29bd6c2ffba8 src/FOL/ex/Locale_Test/Locale_Test.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/FOL/ex/Locale_Test/Locale_Test.thy Wed May 26 21:20:18 2010 +0200 @@ -0,0 +1,24 @@ +(* Title: FOL/ex/Locale_Test/Locale_Test.thy + Author: Clemens Ballarin + +Test environment for the locale implementation. +*) + +theory Locale_Test +imports Locale_Test1 Locale_Test2 Locale_Test3 +begin + +text {* Result of theory merge with distinct but identical interpretations *} + +context mixin_thy_merge +begin +lemmas less_mixin_thy_merge1 = le.less_def +lemmas less_mixin_thy_merge2 = le'.less_def +end + +lemma "gless(x, y) <-> gle(x, y) & x ~= y" (* mixin from first interpretation applied *) + by (rule le1.less_mixin_thy_merge1) +lemma "gless'(x, y) <-> gle'(x, y) & x ~= y" (* mixin from second interpretation applied *) + by (rule le1.less_mixin_thy_merge2) + +end diff -r 1d048c6940c8 -r 29bd6c2ffba8 src/FOL/ex/Locale_Test/Locale_Test1.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/FOL/ex/Locale_Test/Locale_Test1.thy Wed May 26 21:20:18 2010 +0200 @@ -0,0 +1,717 @@ +(* Title: FOL/ex/Locale_Test/Locale_Test1.thy + Author: Clemens Ballarin, TU Muenchen + +Test environment for the locale implementation. +*) + +theory Locale_Test1 +imports FOL +begin + +typedecl int arities int :: "term" +consts plus :: "int => int => int" (infixl "+" 60) + zero :: int ("0") + minus :: "int => int" ("- _") + +axioms + int_assoc: "(x + y::int) + z = x + (y + z)" + int_zero: "0 + x = x" + int_minus: "(-x) + x = 0" + int_minus2: "-(-x) = x" + +section {* Inference of parameter types *} + +locale param1 = fixes p +print_locale! param1 + +locale param2 = fixes p :: 'b +print_locale! param2 + +(* +locale param_top = param2 r for r :: "'b :: {}" + Fails, cannot generalise parameter. +*) + +locale param3 = fixes p (infix ".." 50) +print_locale! param3 + +locale param4 = fixes p :: "'a => 'a => 'a" (infix ".." 50) +print_locale! param4 + + +subsection {* Incremental type constraints *} + +locale constraint1 = + fixes prod (infixl "**" 65) + assumes l_id: "x ** y = x" + assumes assoc: "(x ** y) ** z = x ** (y ** z)" +print_locale! constraint1 + +locale constraint2 = + fixes p and q + assumes "p = q" +print_locale! constraint2 + + +section {* Inheritance *} + +locale semi = + fixes prod (infixl "**" 65) + assumes assoc: "(x ** y) ** z = x ** (y ** z)" +print_locale! semi thm semi_def + +locale lgrp = semi + + fixes one and inv + assumes lone: "one ** x = x" + and linv: "inv(x) ** x = one" +print_locale! lgrp thm lgrp_def lgrp_axioms_def + +locale add_lgrp = semi "op ++" for sum (infixl "++" 60) + + fixes zero and neg + assumes lzero: "zero ++ x = x" + and lneg: "neg(x) ++ x = zero" +print_locale! add_lgrp thm add_lgrp_def add_lgrp_axioms_def + +locale rev_lgrp = semi "%x y. y ++ x" for sum (infixl "++" 60) +print_locale! rev_lgrp thm rev_lgrp_def + +locale hom = f: semi f + g: semi g for f and g +print_locale! hom thm hom_def + +locale perturbation = semi + d: semi "%x y. delta(x) ** delta(y)" for delta +print_locale! perturbation thm perturbation_def + +locale pert_hom = d1: perturbation f d1 + d2: perturbation f d2 for f d1 d2 +print_locale! pert_hom thm pert_hom_def + +text {* Alternative expression, obtaining nicer names in @{text "semi f"}. *} +locale pert_hom' = semi f + d1: perturbation f d1 + d2: perturbation f d2 for f d1 d2 +print_locale! pert_hom' thm pert_hom'_def + + +section {* Syntax declarations *} + +locale logic = + fixes land (infixl "&&" 55) + and lnot ("-- _" [60] 60) + assumes assoc: "(x && y) && z = x && (y && z)" + and notnot: "-- (-- x) = x" +begin + +definition lor (infixl "||" 50) where + "x || y = --(-- x && -- y)" + +end +print_locale! logic + +locale use_decl = logic + semi "op ||" +print_locale! use_decl thm use_decl_def + +locale extra_type = + fixes a :: 'a + and P :: "'a => 'b => o" +begin + +definition test :: "'a => o" where + "test(x) <-> (ALL b. P(x, b))" + +end + +term extra_type.test thm extra_type.test_def + +interpretation var?: extra_type "0" "%x y. x = 0" . + +thm var.test_def + + +text {* Under which circumstances term syntax remains active. *} + +locale "syntax" = + fixes p1 :: "'a => 'b" + and p2 :: "'b => o" +begin + +definition d1 :: "'a => o" where "d1(x) <-> ~ p2(p1(x))" +definition d2 :: "'b => o" where "d2(x) <-> ~ p2(x)" + +thm d1_def d2_def + +end + +thm syntax.d1_def syntax.d2_def + +locale syntax' = "syntax" p1 p2 for p1 :: "'a => 'a" and p2 :: "'a => o" +begin + +thm d1_def d2_def (* should print as "d1(?x) <-> ..." and "d2(?x) <-> ..." *) + +ML {* + fun check_syntax ctxt thm expected = + let + val obtained = PrintMode.setmp [] (Display.string_of_thm ctxt) thm; + in + if obtained <> expected + then error ("Theorem syntax '" ^ obtained ^ "' obtained, but '" ^ expected ^ "' expected.") + else () + end; +*} + +ML {* + check_syntax @{context} @{thm d1_def} "d1(?x) <-> ~ p2(p1(?x))"; + check_syntax @{context} @{thm d2_def} "d2(?x) <-> ~ p2(?x)"; +*} + +end + +locale syntax'' = "syntax" p3 p2 for p3 :: "'a => 'b" and p2 :: "'b => o" +begin + +thm d1_def d2_def + (* should print as "syntax.d1(p3, p2, ?x) <-> ..." and "d2(?x) <-> ..." *) + +ML {* + check_syntax @{context} @{thm d1_def} "syntax.d1(p3, p2, ?x) <-> ~ p2(p3(?x))"; + check_syntax @{context} @{thm d2_def} "d2(?x) <-> ~ p2(?x)"; +*} + +end + + +section {* Foundational versions of theorems *} + +thm logic.assoc +thm logic.lor_def + + +section {* Defines *} + +locale logic_def = + fixes land (infixl "&&" 55) + and lor (infixl "||" 50) + and lnot ("-- _" [60] 60) + assumes assoc: "(x && y) && z = x && (y && z)" + and notnot: "-- (-- x) = x" + defines "x || y == --(-- x && -- y)" +begin + +thm lor_def + +lemma "x || y = --(-- x && --y)" + by (unfold lor_def) (rule refl) + +end + +(* Inheritance of defines *) + +locale logic_def2 = logic_def +begin + +lemma "x || y = --(-- x && --y)" + by (unfold lor_def) (rule refl) + +end + + +section {* Notes *} + +(* A somewhat arcane homomorphism example *) + +definition semi_hom where + "semi_hom(prod, sum, h) <-> (ALL x y. h(prod(x, y)) = sum(h(x), h(y)))" + +lemma semi_hom_mult: + "semi_hom(prod, sum, h) ==> h(prod(x, y)) = sum(h(x), h(y))" + by (simp add: semi_hom_def) + +locale semi_hom_loc = prod: semi prod + sum: semi sum + for prod and sum and h + + assumes semi_homh: "semi_hom(prod, sum, h)" + notes semi_hom_mult = semi_hom_mult [OF semi_homh] + +thm semi_hom_loc.semi_hom_mult +(* unspecified, attribute not applied in backgroud theory !!! *) + +lemma (in semi_hom_loc) "h(prod(x, y)) = sum(h(x), h(y))" + by (rule semi_hom_mult) + +(* Referring to facts from within a context specification *) + +lemma + assumes x: "P <-> P" + notes y = x + shows True .. + + +section {* Theorem statements *} + +lemma (in lgrp) lcancel: + "x ** y = x ** z <-> y = z" +proof + assume "x ** y = x ** z" + then have "inv(x) ** x ** y = inv(x) ** x ** z" by (simp add: assoc) + then show "y = z" by (simp add: lone linv) +qed simp +print_locale! lgrp + + +locale rgrp = semi + + fixes one and inv + assumes rone: "x ** one = x" + and rinv: "x ** inv(x) = one" +begin + +lemma rcancel: + "y ** x = z ** x <-> y = z" +proof + assume "y ** x = z ** x" + then have "y ** (x ** inv(x)) = z ** (x ** inv(x))" + by (simp add: assoc [symmetric]) + then show "y = z" by (simp add: rone rinv) +qed simp + +end +print_locale! rgrp + + +subsection {* Patterns *} + +lemma (in rgrp) + assumes "y ** x = z ** x" (is ?a) + shows "y = z" (is ?t) +proof - + txt {* Weird proof involving patterns from context element and conclusion. *} + { + assume ?a + then have "y ** (x ** inv(x)) = z ** (x ** inv(x))" + by (simp add: assoc [symmetric]) + then have ?t by (simp add: rone rinv) + } + note x = this + show ?t by (rule x [OF `?a`]) +qed + + +section {* Interpretation between locales: sublocales *} + +sublocale lgrp < right: rgrp +print_facts +proof unfold_locales + { + fix x + have "inv(x) ** x ** one = inv(x) ** x" by (simp add: linv lone) + then show "x ** one = x" by (simp add: assoc lcancel) + } + note rone = this + { + fix x + have "inv(x) ** x ** inv(x) = inv(x) ** one" + by (simp add: linv lone rone) + then show "x ** inv(x) = one" by (simp add: assoc lcancel) + } +qed + +(* effect on printed locale *) + +print_locale! lgrp + +(* use of derived theorem *) + +lemma (in lgrp) + "y ** x = z ** x <-> y = z" + apply (rule rcancel) + done + +(* circular interpretation *) + +sublocale rgrp < left: lgrp +proof unfold_locales + { + fix x + have "one ** (x ** inv(x)) = x ** inv(x)" by (simp add: rinv rone) + then show "one ** x = x" by (simp add: assoc [symmetric] rcancel) + } + note lone = this + { + fix x + have "inv(x) ** (x ** inv(x)) = one ** inv(x)" + by (simp add: rinv lone rone) + then show "inv(x) ** x = one" by (simp add: assoc [symmetric] rcancel) + } +qed + +(* effect on printed locale *) + +print_locale! rgrp +print_locale! lgrp + + +(* Duality *) + +locale order = + fixes less :: "'a => 'a => o" (infix "<<" 50) + assumes refl: "x << x" + and trans: "[| x << y; y << z |] ==> x << z" + +sublocale order < dual: order "%x y. y << x" + apply unfold_locales apply (rule refl) apply (blast intro: trans) + done + +print_locale! order (* Only two instances of order. *) + +locale order' = + fixes less :: "'a => 'a => o" (infix "<<" 50) + assumes refl: "x << x" + and trans: "[| x << y; y << z |] ==> x << z" + +locale order_with_def = order' +begin + +definition greater :: "'a => 'a => o" (infix ">>" 50) where + "x >> y <-> y << x" + +end + +sublocale order_with_def < dual: order' "op >>" + apply unfold_locales + unfolding greater_def + apply (rule refl) apply (blast intro: trans) + done + +print_locale! order_with_def +(* Note that decls come after theorems that make use of them. *) + + +(* locale with many parameters --- + interpretations generate alternating group A5 *) + + +locale A5 = + fixes A and B and C and D and E + assumes eq: "A <-> B <-> C <-> D <-> E" + +sublocale A5 < 1: A5 _ _ D E C +print_facts + using eq apply (blast intro: A5.intro) done + +sublocale A5 < 2: A5 C _ E _ A +print_facts + using eq apply (blast intro: A5.intro) done + +sublocale A5 < 3: A5 B C A _ _ +print_facts + using eq apply (blast intro: A5.intro) done + +(* Any even permutation of parameters is subsumed by the above. *) + +print_locale! A5 + + +(* Free arguments of instance *) + +locale trivial = + fixes P and Q :: o + assumes Q: "P <-> P <-> Q" +begin + +lemma Q_triv: "Q" using Q by fast + +end + +sublocale trivial < x: trivial x _ + apply unfold_locales using Q by fast + +print_locale! trivial + +context trivial begin thm x.Q [where ?x = True] end + +sublocale trivial < y: trivial Q Q + by unfold_locales + (* Succeeds since previous interpretation is more general. *) + +print_locale! trivial (* No instance for y created (subsumed). *) + + +subsection {* Sublocale, then interpretation in theory *} + +interpretation int?: lgrp "op +" "0" "minus" +proof unfold_locales +qed (rule int_assoc int_zero int_minus)+ + +thm int.assoc int.semi_axioms + +interpretation int2?: semi "op +" + by unfold_locales (* subsumed, thm int2.assoc not generated *) + +ML {* (PureThy.get_thms @{theory} "int2.assoc"; + error "thm int2.assoc was generated") + handle ERROR "Unknown fact \"int2.assoc\"" => ([]:thm list); *} + +thm int.lone int.right.rone + (* the latter comes through the sublocale relation *) + + +subsection {* Interpretation in theory, then sublocale *} + +interpretation fol: logic "op +" "minus" + by unfold_locales (rule int_assoc int_minus2)+ + +locale logic2 = + fixes land (infixl "&&" 55) + and lnot ("-- _" [60] 60) + assumes assoc: "(x && y) && z = x && (y && z)" + and notnot: "-- (-- x) = x" +begin + +definition lor (infixl "||" 50) where + "x || y = --(-- x && -- y)" + +end + +sublocale logic < two: logic2 + by unfold_locales (rule assoc notnot)+ + +thm fol.two.assoc + + +subsection {* Declarations and sublocale *} + +locale logic_a = logic +locale logic_b = logic + +sublocale logic_a < logic_b + by unfold_locales + + +subsection {* Equations *} + +locale logic_o = + fixes land (infixl "&&" 55) + and lnot ("-- _" [60] 60) + assumes assoc_o: "(x && y) && z <-> x && (y && z)" + and notnot_o: "-- (-- x) <-> x" +begin + +definition lor_o (infixl "||" 50) where + "x || y <-> --(-- x && -- y)" + +end + +interpretation x: logic_o "op &" "Not" + where bool_logic_o: "logic_o.lor_o(op &, Not, x, y) <-> x | y" +proof - + show bool_logic_o: "PROP logic_o(op &, Not)" by unfold_locales fast+ + show "logic_o.lor_o(op &, Not, x, y) <-> x | y" + by (unfold logic_o.lor_o_def [OF bool_logic_o]) fast +qed + +thm x.lor_o_def bool_logic_o + +lemma lor_triv: "z <-> z" .. + +lemma (in logic_o) lor_triv: "x || y <-> x || y" by fast + +thm lor_triv [where z = True] (* Check strict prefix. *) + x.lor_triv + + +subsection {* Inheritance of mixins *} + +locale reflexive = + fixes le :: "'a => 'a => o" (infix "\" 50) + assumes refl: "x \ x" +begin + +definition less (infix "\" 50) where "x \ y <-> x \ y & x ~= y" + +end + +consts + gle :: "'a => 'a => o" gless :: "'a => 'a => o" + gle' :: "'a => 'a => o" gless' :: "'a => 'a => o" + +axioms + grefl: "gle(x, x)" gless_def: "gless(x, y) <-> gle(x, y) & x ~= y" + grefl': "gle'(x, x)" gless'_def: "gless'(x, y) <-> gle'(x, y) & x ~= y" + +text {* Setup *} + +locale mixin = reflexive +begin +lemmas less_thm = less_def +end + +interpretation le: mixin gle where "reflexive.less(gle, x, y) <-> gless(x, y)" +proof - + show "mixin(gle)" by unfold_locales (rule grefl) + note reflexive = this[unfolded mixin_def] + show "reflexive.less(gle, x, y) <-> gless(x, y)" + by (simp add: reflexive.less_def[OF reflexive] gless_def) +qed + +text {* Mixin propagated along the locale hierarchy *} + +locale mixin2 = mixin +begin +lemmas less_thm2 = less_def +end + +interpretation le: mixin2 gle + by unfold_locales + +thm le.less_thm2 (* mixin applied *) +lemma "gless(x, y) <-> gle(x, y) & x ~= y" + by (rule le.less_thm2) + +text {* Mixin does not leak to a side branch. *} + +locale mixin3 = reflexive +begin +lemmas less_thm3 = less_def +end + +interpretation le: mixin3 gle + by unfold_locales + +thm le.less_thm3 (* mixin not applied *) +lemma "reflexive.less(gle, x, y) <-> gle(x, y) & x ~= y" by (rule le.less_thm3) + +text {* Mixin only available in original context *} + +locale mixin4_base = reflexive + +locale mixin4_mixin = mixin4_base + +interpretation le: mixin4_mixin gle + where "reflexive.less(gle, x, y) <-> gless(x, y)" +proof - + show "mixin4_mixin(gle)" by unfold_locales (rule grefl) + note reflexive = this[unfolded mixin4_mixin_def mixin4_base_def mixin_def] + show "reflexive.less(gle, x, y) <-> gless(x, y)" + by (simp add: reflexive.less_def[OF reflexive] gless_def) +qed + +locale mixin4_copy = mixin4_base +begin +lemmas less_thm4 = less_def +end + +locale mixin4_combined = le1: mixin4_mixin le' + le2: mixin4_copy le for le' le +begin +lemmas less_thm4' = less_def +end + +interpretation le4: mixin4_combined gle' gle + by unfold_locales (rule grefl') + +thm le4.less_thm4' (* mixin not applied *) +lemma "reflexive.less(gle, x, y) <-> gle(x, y) & x ~= y" + by (rule le4.less_thm4') + +text {* Inherited mixin applied to new theorem *} + +locale mixin5_base = reflexive + +locale mixin5_inherited = mixin5_base + +interpretation le5: mixin5_base gle + where "reflexive.less(gle, x, y) <-> gless(x, y)" +proof - + show "mixin5_base(gle)" by unfold_locales + note reflexive = this[unfolded mixin5_base_def mixin_def] + show "reflexive.less(gle, x, y) <-> gless(x, y)" + by (simp add: reflexive.less_def[OF reflexive] gless_def) +qed + +interpretation le5: mixin5_inherited gle + by unfold_locales + +lemmas (in mixin5_inherited) less_thm5 = less_def + +thm le5.less_thm5 (* mixin applied *) +lemma "gless(x, y) <-> gle(x, y) & x ~= y" + by (rule le5.less_thm5) + +text {* Mixin pushed down to existing inherited locale *} + +locale mixin6_base = reflexive + +locale mixin6_inherited = mixin5_base + +interpretation le6: mixin6_base gle + by unfold_locales +interpretation le6: mixin6_inherited gle + by unfold_locales +interpretation le6: mixin6_base gle + where "reflexive.less(gle, x, y) <-> gless(x, y)" +proof - + show "mixin6_base(gle)" by unfold_locales + note reflexive = this[unfolded mixin6_base_def mixin_def] + show "reflexive.less(gle, x, y) <-> gless(x, y)" + by (simp add: reflexive.less_def[OF reflexive] gless_def) +qed + +lemmas (in mixin6_inherited) less_thm6 = less_def + +thm le6.less_thm6 (* mixin applied *) +lemma "gless(x, y) <-> gle(x, y) & x ~= y" + by (rule le6.less_thm6) + +text {* Existing mixin inherited through sublocale relation *} + +locale mixin7_base = reflexive + +locale mixin7_inherited = reflexive + +interpretation le7: mixin7_base gle + where "reflexive.less(gle, x, y) <-> gless(x, y)" +proof - + show "mixin7_base(gle)" by unfold_locales + note reflexive = this[unfolded mixin7_base_def mixin_def] + show "reflexive.less(gle, x, y) <-> gless(x, y)" + by (simp add: reflexive.less_def[OF reflexive] gless_def) +qed + +interpretation le7: mixin7_inherited gle + by unfold_locales + +lemmas (in mixin7_inherited) less_thm7 = less_def + +thm le7.less_thm7 (* before, mixin not applied *) +lemma "reflexive.less(gle, x, y) <-> gle(x, y) & x ~= y" + by (rule le7.less_thm7) + +sublocale mixin7_inherited < mixin7_base + by unfold_locales + +lemmas (in mixin7_inherited) less_thm7b = less_def + +thm le7.less_thm7b (* after, mixin applied *) +lemma "gless(x, y) <-> gle(x, y) & x ~= y" + by (rule le7.less_thm7b) + + +text {* This locale will be interpreted in later theories. *} + +locale mixin_thy_merge = le: reflexive le + le': reflexive le' for le le' + + +subsection {* Interpretation in proofs *} + +lemma True +proof + interpret "local": lgrp "op +" "0" "minus" + by unfold_locales (* subsumed *) + { + fix zero :: int + assume "!!x. zero + x = x" "!!x. (-x) + x = zero" + then interpret local_fixed: lgrp "op +" zero "minus" + by unfold_locales + thm local_fixed.lone + } + assume "!!x zero. zero + x = x" "!!x zero. (-x) + x = zero" + then interpret local_free: lgrp "op +" zero "minus" for zero + by unfold_locales + thm local_free.lone [where ?zero = 0] +qed + +end diff -r 1d048c6940c8 -r 29bd6c2ffba8 src/FOL/ex/Locale_Test/Locale_Test2.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/FOL/ex/Locale_Test/Locale_Test2.thy Wed May 26 21:20:18 2010 +0200 @@ -0,0 +1,20 @@ +(* Title: FOL/ex/Locale_Test/Locale_Test2.thy + Author: Clemens Ballarin, TU Muenchen + +Test environment for the locale implementation. +*) + +theory Locale_Test2 +imports Locale_Test1 +begin + +interpretation le1: mixin_thy_merge gle gle' + where "reflexive.less(gle, x, y) <-> gless(x, y)" +proof - + show "mixin_thy_merge(gle, gle')" by unfold_locales + note reflexive = this[unfolded mixin_thy_merge_def, THEN conjunct1] + show "reflexive.less(gle, x, y) <-> gless(x, y)" + by (simp add: reflexive.less_def[OF reflexive] gless_def) +qed + +end diff -r 1d048c6940c8 -r 29bd6c2ffba8 src/FOL/ex/Locale_Test/Locale_Test3.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/FOL/ex/Locale_Test/Locale_Test3.thy Wed May 26 21:20:18 2010 +0200 @@ -0,0 +1,20 @@ +(* Title: FOL/ex/Locale_Test/Locale_Test3.thy + Author: Clemens Ballarin + +Test environment for the locale implementation. +*) + +theory Locale_Test3 +imports Locale_Test1 +begin + +interpretation le2: mixin_thy_merge gle gle' + where "reflexive.less(gle', x, y) <-> gless'(x, y)" +proof - + show "mixin_thy_merge(gle, gle')" by unfold_locales + note reflexive = this[unfolded mixin_thy_merge_def, THEN conjunct2] + show "reflexive.less(gle', x, y) <-> gless'(x, y)" + by (simp add: reflexive.less_def[OF reflexive] gless'_def) +qed + +end diff -r 1d048c6940c8 -r 29bd6c2ffba8 src/FOL/ex/ROOT.ML --- a/src/FOL/ex/ROOT.ML Wed May 26 21:20:18 2010 +0200 +++ b/src/FOL/ex/ROOT.ML Wed May 26 21:20:18 2010 +0200 @@ -23,4 +23,4 @@ ]; (*regression test for locales -- sets several global flags!*) -no_document use_thy "LocaleTest"; +no_document use_thy "Locale_Test/Locale_Test";