# HG changeset patch # User wenzelm # Date 1451227963 -3600 # Node ID 2a9bed6cd6e5a78c39cfc190860bd03f5d7359e1 # Parent c51ce9ed0b1c23eccda5f2cb6751eaf83ba245c6 tuned; diff -r c51ce9ed0b1c -r 2a9bed6cd6e5 src/HOL/ex/Set_Theory.thy --- a/src/HOL/ex/Set_Theory.thy Sat Dec 26 19:37:06 2015 +0100 +++ b/src/HOL/ex/Set_Theory.thy Sun Dec 27 15:52:43 2015 +0100 @@ -74,18 +74,18 @@ by best -subsection \The Schröder-Berstein Theorem\ +subsection \The Schröder-Bernstein Theorem\ -lemma disj_lemma: "- (f ` X) = g ` (-X) \ f a = g b \ a \ X \ b \ X" +lemma disj_lemma: "- (f ` X) = g' ` (-X) \ f a = g' b \ a \ X \ b \ X" by blast lemma surj_if_then_else: - "-(f ` X) = g ` (-X) \ surj (\z. if z \ X then f z else g z)" + "-(f ` X) = g' ` (-X) \ surj (\z. if z \ X then f z else g' z)" by (simp add: surj_def) blast lemma bij_if_then_else: - "inj_on f X \ inj_on g (-X) \ -(f ` X) = g ` (-X) \ - h = (\z. if z \ X then f z else g z) \ inj h \ surj h" + "inj_on f X \ inj_on g' (-X) \ -(f ` X) = g' ` (-X) \ + h = (\z. if z \ X then f z else g' z) \ inj h \ surj h" apply (unfold inj_on_def) apply (simp add: surj_if_then_else) apply (blast dest: disj_lemma sym)