# HG changeset patch # User haftmann # Date 1291129089 -3600 # Node ID 2ac5af6eb8a8e75ab1d1b97ae1a91485afc08947 # Parent b117df72e56bbca18e4a3ff69a6fc79eedbb5cb7 adapted proofs to slightly changed definitions of congruent(2) diff -r b117df72e56b -r 2ac5af6eb8a8 src/HOL/Int.thy --- a/src/HOL/Int.thy Mon Nov 29 22:47:55 2010 +0100 +++ b/src/HOL/Int.thy Tue Nov 30 15:58:09 2010 +0100 @@ -102,7 +102,7 @@ lemma minus: "- Abs_Integ(intrel``{(x,y)}) = Abs_Integ(intrel `` {(y,x)})" proof - have "(\(x,y). intrel``{(y,x)}) respects intrel" - by (simp add: congruent_def) + by (auto simp add: congruent_def) thus ?thesis by (simp add: minus_int_def UN_equiv_class [OF equiv_intrel]) qed @@ -113,7 +113,7 @@ proof - have "(\z w. (\(x,y). (\(u,v). intrel `` {(x+u, y+v)}) w) z) respects2 intrel" - by (simp add: congruent2_def) + by (auto simp add: congruent2_def) thus ?thesis by (simp add: add_int_def UN_UN_split_split_eq UN_equiv_class2 [OF equiv_intrel equiv_intrel]) @@ -288,7 +288,7 @@ lemma of_int: "of_int (Abs_Integ (intrel `` {(i,j)})) = of_nat i - of_nat j" proof - have "(\(i,j). { of_nat i - (of_nat j :: 'a) }) respects intrel" - by (simp add: congruent_def algebra_simps of_nat_add [symmetric] + by (auto simp add: congruent_def) (simp add: algebra_simps of_nat_add [symmetric] del: of_nat_add) thus ?thesis by (simp add: of_int_def UN_equiv_class [OF equiv_intrel]) @@ -394,7 +394,7 @@ lemma nat: "nat (Abs_Integ (intrel``{(x,y)})) = x-y" proof - have "(\(x,y). {x-y}) respects intrel" - by (simp add: congruent_def) arith + by (auto simp add: congruent_def) thus ?thesis by (simp add: nat_def UN_equiv_class [OF equiv_intrel]) qed diff -r b117df72e56b -r 2ac5af6eb8a8 src/HOL/Rat.thy --- a/src/HOL/Rat.thy Mon Nov 29 22:47:55 2010 +0100 +++ b/src/HOL/Rat.thy Tue Nov 30 15:58:09 2010 +0100 @@ -146,7 +146,7 @@ lemma minus_rat [simp]: "- Fract a b = Fract (- a) b" proof - have "(\x. ratrel `` {(- fst x, snd x)}) respects ratrel" - by (simp add: congruent_def) + by (simp add: congruent_def split_paired_all) then show ?thesis by (simp add: Fract_def minus_rat_def UN_ratrel) qed