# HG changeset patch # User haftmann # Date 1163606743 -3600 # Node ID 2b58b308300cdced3af7a06af67a6433b457792e # Parent 17e6275e13f582598e50bee8bdceb548734cc37d moved transitivity rules to Orderings.thy diff -r 17e6275e13f5 -r 2b58b308300c src/HOL/Set.thy --- a/src/HOL/Set.thy Wed Nov 15 17:05:42 2006 +0100 +++ b/src/HOL/Set.thy Wed Nov 15 17:05:43 2006 +0100 @@ -1031,6 +1031,10 @@ subsection {* Further set-theory lemmas *} +instance set :: (type) order + by (intro_classes, + (assumption | rule subset_refl subset_trans subset_antisym psubset_eq)+) + subsubsection {* Derived rules involving subsets. *} text {* @{text insert}. *} @@ -2104,165 +2108,7 @@ lemma set_mp: "A \ B ==> x:A ==> x:B" by (rule subsetD) -lemma ord_le_eq_trans: "a <= b ==> b = c ==> a <= c" - by (rule subst) - -lemma ord_eq_le_trans: "a = b ==> b <= c ==> a <= c" - by (rule ssubst) - -lemma ord_less_eq_trans: "a < b ==> b = c ==> a < c" - by (rule subst) - -lemma ord_eq_less_trans: "a = b ==> b < c ==> a < c" - by (rule ssubst) - -lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==> - (!!x y. x < y ==> f x < f y) ==> f a < c" -proof - - assume r: "!!x y. x < y ==> f x < f y" - assume "a < b" hence "f a < f b" by (rule r) - also assume "f b < c" - finally (order_less_trans) show ?thesis . -qed - -lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==> - (!!x y. x < y ==> f x < f y) ==> a < f c" -proof - - assume r: "!!x y. x < y ==> f x < f y" - assume "a < f b" - also assume "b < c" hence "f b < f c" by (rule r) - finally (order_less_trans) show ?thesis . -qed - -lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==> - (!!x y. x <= y ==> f x <= f y) ==> f a < c" -proof - - assume r: "!!x y. x <= y ==> f x <= f y" - assume "a <= b" hence "f a <= f b" by (rule r) - also assume "f b < c" - finally (order_le_less_trans) show ?thesis . -qed - -lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==> - (!!x y. x < y ==> f x < f y) ==> a < f c" -proof - - assume r: "!!x y. x < y ==> f x < f y" - assume "a <= f b" - also assume "b < c" hence "f b < f c" by (rule r) - finally (order_le_less_trans) show ?thesis . -qed - -lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==> - (!!x y. x < y ==> f x < f y) ==> f a < c" -proof - - assume r: "!!x y. x < y ==> f x < f y" - assume "a < b" hence "f a < f b" by (rule r) - also assume "f b <= c" - finally (order_less_le_trans) show ?thesis . -qed - -lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==> - (!!x y. x <= y ==> f x <= f y) ==> a < f c" -proof - - assume r: "!!x y. x <= y ==> f x <= f y" - assume "a < f b" - also assume "b <= c" hence "f b <= f c" by (rule r) - finally (order_less_le_trans) show ?thesis . -qed - -lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==> - (!!x y. x <= y ==> f x <= f y) ==> a <= f c" -proof - - assume r: "!!x y. x <= y ==> f x <= f y" - assume "a <= f b" - also assume "b <= c" hence "f b <= f c" by (rule r) - finally (order_trans) show ?thesis . -qed - -lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==> - (!!x y. x <= y ==> f x <= f y) ==> f a <= c" -proof - - assume r: "!!x y. x <= y ==> f x <= f y" - assume "a <= b" hence "f a <= f b" by (rule r) - also assume "f b <= c" - finally (order_trans) show ?thesis . -qed - -lemma ord_le_eq_subst: "a <= b ==> f b = c ==> - (!!x y. x <= y ==> f x <= f y) ==> f a <= c" -proof - - assume r: "!!x y. x <= y ==> f x <= f y" - assume "a <= b" hence "f a <= f b" by (rule r) - also assume "f b = c" - finally (ord_le_eq_trans) show ?thesis . -qed - -lemma ord_eq_le_subst: "a = f b ==> b <= c ==> - (!!x y. x <= y ==> f x <= f y) ==> a <= f c" -proof - - assume r: "!!x y. x <= y ==> f x <= f y" - assume "a = f b" - also assume "b <= c" hence "f b <= f c" by (rule r) - finally (ord_eq_le_trans) show ?thesis . -qed - -lemma ord_less_eq_subst: "a < b ==> f b = c ==> - (!!x y. x < y ==> f x < f y) ==> f a < c" -proof - - assume r: "!!x y. x < y ==> f x < f y" - assume "a < b" hence "f a < f b" by (rule r) - also assume "f b = c" - finally (ord_less_eq_trans) show ?thesis . -qed - -lemma ord_eq_less_subst: "a = f b ==> b < c ==> - (!!x y. x < y ==> f x < f y) ==> a < f c" -proof - - assume r: "!!x y. x < y ==> f x < f y" - assume "a = f b" - also assume "b < c" hence "f b < f c" by (rule r) - finally (ord_eq_less_trans) show ?thesis . -qed - -instance set :: (type) order - by (intro_classes, - (assumption | rule subset_refl subset_trans subset_antisym psubset_eq)+) - -text {* - Note that this list of rules is in reverse order of priorities. -*} - lemmas basic_trans_rules [trans] = - order_less_subst2 - order_less_subst1 - order_le_less_subst2 - order_le_less_subst1 - order_less_le_subst2 - order_less_le_subst1 - order_subst2 - order_subst1 - ord_le_eq_subst - ord_eq_le_subst - ord_less_eq_subst - ord_eq_less_subst - forw_subst - back_subst - rev_mp - mp - set_rev_mp - set_mp - order_neq_le_trans - order_le_neq_trans - order_less_trans - order_less_asym' - order_le_less_trans - order_less_le_trans - order_trans - order_antisym - ord_le_eq_trans - ord_eq_le_trans - ord_less_eq_trans - ord_eq_less_trans - trans + order_trans_rules set_rev_mp set_mp end