# HG changeset patch # User nipkow # Date 1266505706 -3600 # Node ID 2b9bce05e84b848a617f37361c059242e479d2c5 # Parent 5c5457a7be85732b4b209b310ab40621d682f694 added lemma diff -r 5c5457a7be85 -r 2b9bce05e84b src/HOL/List.thy --- a/src/HOL/List.thy Thu Feb 18 08:17:24 2010 +0100 +++ b/src/HOL/List.thy Thu Feb 18 16:08:26 2010 +0100 @@ -720,6 +720,11 @@ lemma map_map [simp]: "map f (map g xs) = map (f \ g) xs" by (induct xs) auto +lemma map_comp_map[simp]: "((map f) o (map g)) = map(f o g)" +apply(rule ext) +apply(simp) +done + lemma rev_map: "rev (map f xs) = map f (rev xs)" by (induct xs) auto