# HG changeset patch # User wenzelm # Date 1163151748 -3600 # Node ID 2c7d3d1204180ca64a18386ee9b092be44c2883d # Parent a713ae348e8ad47c426f4f4575b70173adaa1c21 tuned; diff -r a713ae348e8a -r 2c7d3d120418 src/HOL/NumberTheory/Gauss.thy --- a/src/HOL/NumberTheory/Gauss.thy Fri Nov 10 10:42:25 2006 +0100 +++ b/src/HOL/NumberTheory/Gauss.thy Fri Nov 10 10:42:28 2006 +0100 @@ -59,9 +59,8 @@ lemma p_eq: "p = (2 * (p - 1) div 2) + 1" using zdiv_zmult_self2 [of 2 "p - 1"] by auto -end -lemma zodd_imp_zdiv_eq: "x \ zOdd ==> 2 * (x - 1) div 2 = 2 * ((x - 1) div 2)" +lemma (in -) zodd_imp_zdiv_eq: "x \ zOdd ==> 2 * (x - 1) div 2 = 2 * ((x - 1) div 2)" apply (frule odd_minus_one_even) apply (simp add: zEven_def) apply (subgoal_tac "2 \ 0") @@ -69,8 +68,6 @@ apply (auto simp add: even_div_2_prop2) done -context GAUSS -begin lemma p_eq2: "p = (2 * ((p - 1) div 2)) + 1" apply (insert p_eq p_prime p_g_2 zprime_zOdd_eq_grt_2 [of p], auto) diff -r a713ae348e8a -r 2c7d3d120418 src/HOL/NumberTheory/Quadratic_Reciprocity.thy --- a/src/HOL/NumberTheory/Quadratic_Reciprocity.thy Fri Nov 10 10:42:25 2006 +0100 +++ b/src/HOL/NumberTheory/Quadratic_Reciprocity.thy Fri Nov 10 10:42:28 2006 +0100 @@ -371,9 +371,7 @@ ultimately show ?thesis .. qed -end - -lemma aux2: "[| zprime p; zprime q; 2 < p; 2 < q |] ==> +lemma (in -) aux2: "[| zprime p; zprime q; 2 < p; 2 < q |] ==> (q * ((p - 1) div 2)) div p \ (q - 1) div 2" proof- assume "zprime p" and "zprime q" and "2 < p" and "2 < q" @@ -402,9 +400,6 @@ using prems by auto qed -context QRTEMP -begin - lemma aux3a: "\j \ P_set. int (card (f1 j)) = (q * j) div p" proof fix j @@ -582,17 +577,14 @@ finally show ?thesis . qed -end -lemma pq_prime_neq: "[| zprime p; zprime q; p \ q |] ==> (~[p = 0] (mod q))" +lemma (in -) pq_prime_neq: "[| zprime p; zprime q; p \ q |] ==> (~[p = 0] (mod q))" apply (auto simp add: zcong_eq_zdvd_prop zprime_def) apply (drule_tac x = q in allE) apply (drule_tac x = p in allE) apply auto done -context QRTEMP -begin lemma QR_short: "(Legendre p q) * (Legendre q p) = (-1::int)^nat(((p - 1) div 2)*((q - 1) div 2))"