# HG changeset patch # User nipkow # Date 1513886507 -3600 # Node ID 2c9694a8c000c5bc9a780955d446e15307504913 # Parent d0ca4e41883952e6c8bccbe30062f940fda45f0b tuned op's diff -r d0ca4e418839 -r 2c9694a8c000 src/HOL/Analysis/Path_Connected.thy --- a/src/HOL/Analysis/Path_Connected.thy Thu Dec 21 20:15:04 2017 +0100 +++ b/src/HOL/Analysis/Path_Connected.thy Thu Dec 21 21:01:47 2017 +0100 @@ -1738,7 +1738,7 @@ case True then show ?thesis by (simp add: path_component_refl_eq pathstart_def) next - case False have "continuous_on {0..1} (p o (op*y))" + case False have "continuous_on {0..1} (p o (op* y))" apply (rule continuous_intros)+ using p [unfolded path_def] y apply (auto simp: mult_le_one intro: continuous_on_subset [of _ p]) @@ -2012,7 +2012,7 @@ by (intro path_connected_continuous_image path_connected_punctured_universe assms) with eq have "path_connected (sphere (0::'a) r)" by auto - then have "path_connected(op +a ` (sphere (0::'a) r))" + then have "path_connected(op + a ` (sphere (0::'a) r))" by (simp add: path_connected_translation) then show ?thesis by (metis add.right_neutral sphere_translation) @@ -2241,7 +2241,7 @@ assumes "DIM('a) = 1" and "r > 0" obtains x y where "sphere a r = {x,y} \ dist x y = 2*r" proof - - have "sphere a r = op +a ` sphere 0 r" + have "sphere a r = op + a ` sphere 0 r" by (metis add.right_neutral sphere_translation) then show ?thesis using sphere_1D_doubleton_zero [OF assms]