# HG changeset patch # User blanchet # Date 1407851339 -7200 # Node ID 2d037f8dc4d590df2bc8eec3b9d00aed1560b959 # Parent a85e0ab840c1922193ca0a3a427e42d62b97264b tuned whitespace diff -r a85e0ab840c1 -r 2d037f8dc4d5 src/HOL/BNF_GFP.thy --- a/src/HOL/BNF_GFP.thy Tue Aug 12 15:48:59 2014 +0200 +++ b/src/HOL/BNF_GFP.thy Tue Aug 12 15:48:59 2014 +0200 @@ -22,33 +22,33 @@ *} lemma one_pointE: "\\x. s = x \ P\ \ P" -by simp + by simp lemma obj_sumE: "\\x. s = Inl x \ P; \x. s = Inr x \ P\ \ P" -by (cases s) auto + by (cases s) auto lemma not_TrueE: "\ True \ P" -by (erule notE, rule TrueI) + by (erule notE, rule TrueI) lemma neq_eq_eq_contradict: "\t \ u; s = t; s = u\ \ P" -by fast + by fast lemma case_sum_expand_Inr: "f o Inl = g \ f x = case_sum g (f o Inr) x" -by (auto split: sum.splits) + by (auto split: sum.splits) lemma case_sum_expand_Inr': "f o Inl = g \ h = f o Inr \ case_sum g h = f" -apply rule - apply (rule ext, force split: sum.split) -by (rule ext, metis case_sum_o_inj(2)) + apply rule + apply (rule ext, force split: sum.split) + by (rule ext, metis case_sum_o_inj(2)) lemma converse_Times: "(A \ B) ^-1 = B \ A" -by fast + by fast lemma equiv_proj: - assumes e: "equiv A R" and "z \ R" + assumes e: "equiv A R" and m: "z \ R" shows "(proj R o fst) z = (proj R o snd) z" proof - - from assms(2) have z: "(fst z, snd z) \ R" by auto + from m have z: "(fst z, snd z) \ R" by auto with e have "\x. (fst z, x) \ R \ (snd z, x) \ R" "\x. (snd z, x) \ R \ (fst z, x) \ R" unfolding equiv_def sym_def trans_def by blast+ then show ?thesis unfolding proj_def[abs_def] by auto @@ -58,93 +58,93 @@ definition image2 where "image2 A f g = {(f a, g a) | a. a \ A}" lemma Id_on_Gr: "Id_on A = Gr A id" -unfolding Id_on_def Gr_def by auto + unfolding Id_on_def Gr_def by auto lemma image2_eqI: "\b = f x; c = g x; x \ A\ \ (b, c) \ image2 A f g" -unfolding image2_def by auto + unfolding image2_def by auto lemma IdD: "(a, b) \ Id \ a = b" -by auto + by auto lemma image2_Gr: "image2 A f g = (Gr A f)^-1 O (Gr A g)" -unfolding image2_def Gr_def by auto + unfolding image2_def Gr_def by auto lemma GrD1: "(x, fx) \ Gr A f \ x \ A" -unfolding Gr_def by simp + unfolding Gr_def by simp lemma GrD2: "(x, fx) \ Gr A f \ f x = fx" -unfolding Gr_def by simp + unfolding Gr_def by simp lemma Gr_incl: "Gr A f \ A <*> B \ f ` A \ B" -unfolding Gr_def by auto + unfolding Gr_def by auto lemma subset_Collect_iff: "B \ A \ (B \ {x \ A. P x}) = (\x \ B. P x)" -by blast + by blast lemma subset_CollectI: "B \ A \ (\x. x \ B \ Q x \ P x) \ ({x \ B. Q x} \ {x \ A. P x})" -by blast + by blast lemma in_rel_Collect_split_eq: "in_rel (Collect (split X)) = X" -unfolding fun_eq_iff by auto + unfolding fun_eq_iff by auto lemma Collect_split_in_rel_leI: "X \ Y \ X \ Collect (split (in_rel Y))" -by auto + by auto lemma Collect_split_in_rel_leE: "X \ Collect (split (in_rel Y)) \ (X \ Y \ R) \ R" -by force + by force lemma conversep_in_rel: "(in_rel R)\\ = in_rel (R\)" -unfolding fun_eq_iff by auto + unfolding fun_eq_iff by auto lemma relcompp_in_rel: "in_rel R OO in_rel S = in_rel (R O S)" -unfolding fun_eq_iff by auto + unfolding fun_eq_iff by auto lemma in_rel_Gr: "in_rel (Gr A f) = Grp A f" -unfolding Gr_def Grp_def fun_eq_iff by auto + unfolding Gr_def Grp_def fun_eq_iff by auto definition relImage where -"relImage R f \ {(f a1, f a2) | a1 a2. (a1,a2) \ R}" + "relImage R f \ {(f a1, f a2) | a1 a2. (a1,a2) \ R}" definition relInvImage where -"relInvImage A R f \ {(a1, a2) | a1 a2. a1 \ A \ a2 \ A \ (f a1, f a2) \ R}" + "relInvImage A R f \ {(a1, a2) | a1 a2. a1 \ A \ a2 \ A \ (f a1, f a2) \ R}" lemma relImage_Gr: -"\R \ A \ A\ \ relImage R f = (Gr A f)^-1 O R O Gr A f" -unfolding relImage_def Gr_def relcomp_def by auto + "\R \ A \ A\ \ relImage R f = (Gr A f)^-1 O R O Gr A f" + unfolding relImage_def Gr_def relcomp_def by auto lemma relInvImage_Gr: "\R \ B \ B\ \ relInvImage A R f = Gr A f O R O (Gr A f)^-1" -unfolding Gr_def relcomp_def image_def relInvImage_def by auto + unfolding Gr_def relcomp_def image_def relInvImage_def by auto lemma relImage_mono: -"R1 \ R2 \ relImage R1 f \ relImage R2 f" -unfolding relImage_def by auto + "R1 \ R2 \ relImage R1 f \ relImage R2 f" + unfolding relImage_def by auto lemma relInvImage_mono: -"R1 \ R2 \ relInvImage A R1 f \ relInvImage A R2 f" -unfolding relInvImage_def by auto + "R1 \ R2 \ relInvImage A R1 f \ relInvImage A R2 f" + unfolding relInvImage_def by auto lemma relInvImage_Id_on: -"(\a1 a2. f a1 = f a2 \ a1 = a2) \ relInvImage A (Id_on B) f \ Id" -unfolding relInvImage_def Id_on_def by auto + "(\a1 a2. f a1 = f a2 \ a1 = a2) \ relInvImage A (Id_on B) f \ Id" + unfolding relInvImage_def Id_on_def by auto lemma relInvImage_UNIV_relImage: -"R \ relInvImage UNIV (relImage R f) f" -unfolding relInvImage_def relImage_def by auto + "R \ relInvImage UNIV (relImage R f) f" + unfolding relInvImage_def relImage_def by auto lemma relImage_proj: -assumes "equiv A R" -shows "relImage R (proj R) \ Id_on (A//R)" -unfolding relImage_def Id_on_def -using proj_iff[OF assms] equiv_class_eq_iff[OF assms] -by (auto simp: proj_preserves) + assumes "equiv A R" + shows "relImage R (proj R) \ Id_on (A//R)" + unfolding relImage_def Id_on_def + using proj_iff[OF assms] equiv_class_eq_iff[OF assms] + by (auto simp: proj_preserves) lemma relImage_relInvImage: -assumes "R \ f ` A <*> f ` A" -shows "relImage (relInvImage A R f) f = R" -using assms unfolding relImage_def relInvImage_def by fast + assumes "R \ f ` A <*> f ` A" + shows "relImage (relInvImage A R f) f = R" + using assms unfolding relImage_def relInvImage_def by fast lemma subst_Pair: "P x y \ a = (x, y) \ P (fst a) (snd a)" -by simp + by simp lemma fst_diag_id: "(fst \ (%x. (x, x))) z = id z" by simp lemma snd_diag_id: "(snd \ (%x. (x, x))) z = id z" by simp @@ -159,76 +159,75 @@ definition shift where "shift lab k = (\kl. lab (k # kl))" lemma empty_Shift: "\[] \ Kl; k \ Succ Kl []\ \ [] \ Shift Kl k" -unfolding Shift_def Succ_def by simp + unfolding Shift_def Succ_def by simp lemma SuccD: "k \ Succ Kl kl \ kl @ [k] \ Kl" -unfolding Succ_def by simp + unfolding Succ_def by simp lemmas SuccE = SuccD[elim_format] lemma SuccI: "kl @ [k] \ Kl \ k \ Succ Kl kl" -unfolding Succ_def by simp + unfolding Succ_def by simp lemma ShiftD: "kl \ Shift Kl k \ k # kl \ Kl" -unfolding Shift_def by simp + unfolding Shift_def by simp lemma Succ_Shift: "Succ (Shift Kl k) kl = Succ Kl (k # kl)" -unfolding Succ_def Shift_def by auto + unfolding Succ_def Shift_def by auto lemma length_Cons: "length (x # xs) = Suc (length xs)" -by simp + by simp lemma length_append_singleton: "length (xs @ [x]) = Suc (length xs)" -by simp + by simp (*injection into the field of a cardinal*) definition "toCard_pred A r f \ inj_on f A \ f ` A \ Field r \ Card_order r" definition "toCard A r \ SOME f. toCard_pred A r f" lemma ex_toCard_pred: -"\|A| \o r; Card_order r\ \ \ f. toCard_pred A r f" -unfolding toCard_pred_def -using card_of_ordLeq[of A "Field r"] - ordLeq_ordIso_trans[OF _ card_of_unique[of "Field r" r], of "|A|"] -by blast + "\|A| \o r; Card_order r\ \ \ f. toCard_pred A r f" + unfolding toCard_pred_def + using card_of_ordLeq[of A "Field r"] + ordLeq_ordIso_trans[OF _ card_of_unique[of "Field r" r], of "|A|"] + by blast lemma toCard_pred_toCard: "\|A| \o r; Card_order r\ \ toCard_pred A r (toCard A r)" -unfolding toCard_def using someI_ex[OF ex_toCard_pred] . + unfolding toCard_def using someI_ex[OF ex_toCard_pred] . -lemma toCard_inj: "\|A| \o r; Card_order r; x \ A; y \ A\ \ - toCard A r x = toCard A r y \ x = y" -using toCard_pred_toCard unfolding inj_on_def toCard_pred_def by blast +lemma toCard_inj: "\|A| \o r; Card_order r; x \ A; y \ A\ \ toCard A r x = toCard A r y \ x = y" + using toCard_pred_toCard unfolding inj_on_def toCard_pred_def by blast definition "fromCard A r k \ SOME b. b \ A \ toCard A r b = k" lemma fromCard_toCard: -"\|A| \o r; Card_order r; b \ A\ \ fromCard A r (toCard A r b) = b" -unfolding fromCard_def by (rule some_equality) (auto simp add: toCard_inj) + "\|A| \o r; Card_order r; b \ A\ \ fromCard A r (toCard A r b) = b" + unfolding fromCard_def by (rule some_equality) (auto simp add: toCard_inj) lemma Inl_Field_csum: "a \ Field r \ Inl a \ Field (r +c s)" -unfolding Field_card_of csum_def by auto + unfolding Field_card_of csum_def by auto lemma Inr_Field_csum: "a \ Field s \ Inr a \ Field (r +c s)" -unfolding Field_card_of csum_def by auto + unfolding Field_card_of csum_def by auto lemma rec_nat_0_imp: "f = rec_nat f1 (%n rec. f2 n rec) \ f 0 = f1" -by auto + by auto lemma rec_nat_Suc_imp: "f = rec_nat f1 (%n rec. f2 n rec) \ f (Suc n) = f2 n (f n)" -by auto + by auto lemma rec_list_Nil_imp: "f = rec_list f1 (%x xs rec. f2 x xs rec) \ f [] = f1" -by auto + by auto lemma rec_list_Cons_imp: "f = rec_list f1 (%x xs rec. f2 x xs rec) \ f (x # xs) = f2 x xs (f xs)" -by auto + by auto lemma not_arg_cong_Inr: "x \ y \ Inr x \ Inr y" -by simp + by simp lemma Collect_splitD: "x \ Collect (split A) \ A (fst x) (snd x)" -by auto + by auto definition image2p where "image2p f g R = (\x y. \x' y'. R x' y' \ f x' = x \ g y' = y)" @@ -250,20 +249,21 @@ lemma equiv_Eps_in: "\equiv A r; X \ A//r\ \ Eps (%x. x \ X) \ X" -apply (rule someI2_ex) -using in_quotient_imp_non_empty by blast + apply (rule someI2_ex) + using in_quotient_imp_non_empty by blast lemma equiv_Eps_preserves: -assumes ECH: "equiv A r" and X: "X \ A//r" -shows "Eps (%x. x \ X) \ A" -apply (rule in_mono[rule_format]) - using assms apply (rule in_quotient_imp_subset) -by (rule equiv_Eps_in) (rule assms)+ + assumes ECH: "equiv A r" and X: "X \ A//r" + shows "Eps (%x. x \ X) \ A" + apply (rule in_mono[rule_format]) + using assms apply (rule in_quotient_imp_subset) + by (rule equiv_Eps_in) (rule assms)+ lemma proj_Eps: -assumes "equiv A r" and "X \ A//r" -shows "proj r (Eps (%x. x \ X)) = X" -unfolding proj_def proof auto + assumes "equiv A r" and "X \ A//r" + shows "proj r (Eps (%x. x \ X)) = X" +unfolding proj_def +proof auto fix x assume x: "x \ X" thus "(Eps (%x. x \ X), x) \ r" using assms equiv_Eps_in in_quotient_imp_in_rel by fast next @@ -276,7 +276,7 @@ lemma univ_commute: assumes ECH: "equiv A r" and RES: "f respects r" and x: "x \ A" shows "(univ f) (proj r x) = f x" -unfolding univ_def proof - +proof (unfold univ_def) have prj: "proj r x \ A//r" using x proj_preserves by fast hence "Eps (%y. y \ proj r x) \ A" using ECH equiv_Eps_preserves by fast moreover have "proj r (Eps (%y. y \ proj r x)) = proj r x" using ECH prj proj_Eps by fast @@ -285,9 +285,8 @@ qed lemma univ_preserves: -assumes ECH: "equiv A r" and RES: "f respects r" and - PRES: "\ x \ A. f x \ B" -shows "\X \ A//r. univ f X \ B" + assumes ECH: "equiv A r" and RES: "f respects r" and PRES: "\ x \ A. f x \ B" + shows "\X \ A//r. univ f X \ B" proof fix X assume "X \ A//r" then obtain x where x: "x \ A" and X: "X = proj r x" using ECH proj_image[of r A] by blast