# HG changeset patch # User haftmann # Date 1266399800 -3600 # Node ID 2e0966d6f951fdaf2d314dd69ad6ac0dea98330f # Parent be96405ccaf32a036b010d38951cceadd9e18782 added simple theory about discrete summation diff -r be96405ccaf3 -r 2e0966d6f951 src/HOL/ex/ROOT.ML --- a/src/HOL/ex/ROOT.ML Wed Feb 17 09:51:46 2010 +0100 +++ b/src/HOL/ex/ROOT.ML Wed Feb 17 10:43:20 2010 +0100 @@ -66,7 +66,8 @@ "Refute_Examples", "Quickcheck_Examples", "Landau", - "Execute_Choice" + "Execute_Choice", + "Summation" ]; HTML.with_charset "utf-8" (no_document use_thys) diff -r be96405ccaf3 -r 2e0966d6f951 src/HOL/ex/Summation.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/ex/Summation.thy Wed Feb 17 10:43:20 2010 +0100 @@ -0,0 +1,107 @@ +(* Author: Florian Haftmann, TU Muenchen *) + +header {* Some basic facts about discrete summation *} + +theory Summation +imports Main +begin + +text {* Auxiliary. *} + +lemma add_setsum_orient: + "setsum f {k.. k < l \ setsum f {j.. :: "(int \ 'a\ab_group_add) \ int \ 'a" where + "\ f k = f (k + 1) - f k" + +lemma \_shift: + "\ (\k. l + f k) = \ f" + by (simp add: \_def expand_fun_eq) + +lemma \_same_shift: + assumes "\ f = \ g" + shows "\l. (op +) l \ f = g" +proof - + fix k + from assms have "\k. \ f k = \ g k" by simp + then have k_incr: "\k. f (k + 1) - g (k + 1) = f k - g k" + by (simp add: \_def algebra_simps) + then have "\k. f ((k - 1) + 1) - g ((k - 1) + 1) = f (k - 1) - g (k - 1)" + by blast + then have k_decr: "\k. f (k - 1) - g (k - 1) = f k - g k" + by simp + have "\k. f k - g k = f 0 - g 0" + proof - + fix k + show "f k - g k = f 0 - g 0" + by (induct k rule: int_induct) (simp_all add: k_incr k_decr) + qed + then have "\k. ((op +) (g 0 - f 0) \ f) k = g k" + by (simp add: algebra_simps) + then have "(op +) (g 0 - f 0) \ f = g" .. + then show ?thesis .. +qed + +text {* The formal sum operator. *} + +definition \ :: "(int \ 'a\ab_group_add) \ int \ int \ 'a" where + "\ f j l = (if j < l then setsum f {j.. l then - setsum f {l.._same [simp]: + "\ f j j = 0" + by (simp add: \_def) + +lemma \_positive: + "j < l \ \ f j l = setsum f {j.._def) + +lemma \_negative: + "j > l \ \ f j l = - \ f l j" + by (simp add: \_def) + +lemma add_\: + "\ f j k + \ f k l = \ f j l" + by (simp add: \_def algebra_simps add_setsum_int) + (simp_all add: add_setsum_orient [of f k j l] + add_setsum_orient [of f j l k] + add_setsum_orient [of f j k l] add_setsum_int) + +lemma \_incr_upper: + "\ f j (l + 1) = \ f j l + f l" +proof - + have "{l.. f l (l + 1) = f l" by (simp add: \_def) + moreover have "\ f j (l + 1) = \ f j l + \ f l (l + 1)" by (simp add: add_\) + ultimately show ?thesis by simp +qed + +text {* Fundamental lemmas: The relation between @{term \} and @{term \}. *} + +lemma \_\: + "\ (\ f j) = f" +proof + fix k + show "\ (\ f j) k = f k" + by (simp add: \_def \_incr_upper) +qed + +lemma \_\: + "\ (\ f) j l = f l - f j" +proof - + from \_\ have "\ (\ (\ f) j) = \ f" . + then obtain k where "(op +) k \ \ (\ f) j = f" by (blast dest: \_same_shift) + then have "\q. f q = k + \ (\ f) j q" by (simp add: expand_fun_eq) + then show ?thesis by simp +qed + +end