# HG changeset patch # User wenzelm # Date 1380037065 -7200 # Node ID 2e4b435e17bc001e5a28e2ee5a5995d43ca489db # Parent 08721d7b22628e9688328b1863d383d3b52c7fa2 tuned proofs; diff -r 08721d7b2262 -r 2e4b435e17bc src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy --- a/src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy Tue Sep 24 17:13:12 2013 +0200 +++ b/src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy Tue Sep 24 17:37:45 2013 +0200 @@ -24,9 +24,10 @@ (** move this **) lemma divide_nonneg_nonneg: + fixes a b :: real assumes "a \ 0" and "b \ 0" - shows "0 \ a / (b::real)" + shows "0 \ a / b" proof (cases "b = 0") case True then show ?thesis by auto @@ -1390,7 +1391,8 @@ fix x xa xb xc y assume as: "x = (\(b, g) x. if x = a then b else g x) xa" - "xb \ UNIV - insert a s0" "xa = (xc, y)" + "xb \ UNIV - insert a s0" + "xa = (xc, y)" "xc \ t" "\x\s0. y x \ t" "\x\UNIV - s0. y x = d" @@ -2220,7 +2222,7 @@ ultimately have *: "?A = {s, insert a3 (s - {a0})}" by blast have "s \ insert a3 (s - {a0})" - using `a3\s` by auto + using `a3 \ s` by auto then have ?thesis unfolding * by auto } @@ -3344,7 +3346,9 @@ moreover guess s using as(1)[unfolded simplex_top_face[OF assms(1) allp,symmetric]] .. then guess a .. ultimately show "\s a. ksimplex p (n + 1) s \ - a \ s \ f = s - {a} \ reduced lab (n + 1) ` f = {0..n} \ ((\j\{1..n + 1}. \x\f. x j = 0) \ (\j\{1..n + 1}. \x\f. x j = p))" (is ?ex) + a \ s \ f = s - {a} \ + reduced lab (n + 1) ` f = {0..n} \ + ((\j\{1..n + 1}. \x\f. x j = 0) \ (\j\{1..n + 1}. \x\f. x j = p))" apply (rule_tac x = s in exI) apply (rule_tac x = a in exI) unfolding complete_face_top[OF *] @@ -3354,7 +3358,8 @@ next fix f assume as: "\s a. ksimplex p (n + 1) s \ - a \ s \ f = s - {a} \ reduced lab (n + 1) ` f = {0..n} \ ((\j\{1..n + 1}. \x\f. x j = 0) \ (\j\{1..n + 1}. \x\f. x j = p))" (is ?ex) + a \ s \ f = s - {a} \ reduced lab (n + 1) ` f = {0..n} \ + ((\j\{1..n + 1}. \x\f. x j = 0) \ (\j\{1..n + 1}. \x\f. x j = p))" then guess s .. then guess a by (elim exE conjE) note sa = this { @@ -3447,7 +3452,7 @@ and "\x. \j\{1..Suc n}. (\j. x j \ p) \ x j = 0 \ lab x j = 0" and "\x. \j\{1..Suc n}. (\j. x j \ p) \ x j = p \ lab x j = 1" and "odd (card {f. ksimplex p n f \ reduced lab n ` f = {0..n}})" - shows "odd (card {s. ksimplex p (Suc n) s \ reduced lab (Suc n) ` s = {0..Suc n}})" + shows "odd (card {s. ksimplex p (Suc n) s \ reduced lab (Suc n) ` s = {0..Suc n}})" using assms unfolding Suc_eq_plus1 by (rule kuhn_induction) @@ -4255,7 +4260,7 @@ lemma interval_bij_bij: "\(i::'a::ordered_euclidean_space)\Basis. a\i < b\i \ u\i < v\i \ - interval_bij (a,b) (u,v) (interval_bij (u,v) (a,b) x) = x" + interval_bij (a, b) (u, v) (interval_bij (u, v) (a, b) x) = x" by (auto simp: interval_bij_def euclidean_eq_iff[where 'a='a]) end