# HG changeset patch # User paulson # Date 1136809714 -3600 # Node ID 2e7afae14fa5fffe84573314eda8f493e40e90ef # Parent 9a5419d5ca01b74a787e8326921f105c40ba3f4a tidied diff -r 9a5419d5ca01 -r 2e7afae14fa5 src/HOL/Integ/NatSimprocs.thy --- a/src/HOL/Integ/NatSimprocs.thy Mon Jan 09 13:28:06 2006 +0100 +++ b/src/HOL/Integ/NatSimprocs.thy Mon Jan 09 13:28:34 2006 +0100 @@ -35,8 +35,8 @@ "neg (number_of (bin_minus v)::int) ==> Suc m - (number_of v) = m - (number_of (bin_pred v))" apply (subst Suc_diff_eq_diff_pred) -apply (simp add: ); -apply (simp del: nat_numeral_1_eq_1); +apply simp +apply (simp del: nat_numeral_1_eq_1) apply (auto simp only: diff_nat_number_of less_0_number_of [symmetric] neg_number_of_bin_pred_iff_0) done @@ -360,7 +360,8 @@ "(0 < r/2) = (0 < (r::'a::{ordered_field,division_by_zero,number_ring}))" by auto -lemmas half_gt_zero = half_gt_zero_iff [THEN iffD2, simp] +lemmas half_gt_zero = half_gt_zero_iff [THEN iffD2] +declare half_gt_zero [simp] (* The following lemma should appear in Divides.thy, but there the proof doesn't work. *)