# HG changeset patch # User paulson # Date 864306577 -7200 # Node ID 2ee6c397003dd19310f57186d349a76dbc6630c4 # Parent c9c99aa082fb6b44c16f5f10603299c56ab3f25b Deleted rprod: lex_prod is (usually?) enough diff -r c9c99aa082fb -r 2ee6c397003d src/HOL/WF_Rel.ML --- a/src/HOL/WF_Rel.ML Thu May 22 15:09:09 1997 +0200 +++ b/src/HOL/WF_Rel.ML Thu May 22 15:09:37 1997 +0200 @@ -3,7 +3,7 @@ Author: Konrad Slind Copyright 1996 TU Munich -Derived wellfounded relations: inverse image, relational product, measure, ... +Derived WF relations: inverse image, lexicographic product, measure, ... *) open WF_Rel; @@ -79,20 +79,6 @@ qed "wf_lex_prod"; AddSIs [wf_lex_prod]; -(*---------------------------------------------------------------------------- - * Wellfoundedness of relational product - *---------------------------------------------------------------------------*) -val [wfa,wfb] = goalw thy [wf_def,rprod_def] - "[| wf(ra); wf(rb) |] ==> wf(rprod ra rb)"; -by (EVERY1 [rtac allI,rtac impI, rtac split_all_pair]); -by (rtac (wfa RS spec RS mp) 1); -by (EVERY1 [rtac allI,rtac impI]); -by (rtac (wfb RS spec RS mp) 1); -by (Blast_tac 1); -qed "wf_rel_prod"; -AddSIs [wf_rel_prod]; - - (*--------------------------------------------------------------------------- * Wellfoundedness of subsets *---------------------------------------------------------------------------*) @@ -122,13 +108,6 @@ qed "trans_lex_prod"; AddSIs [trans_lex_prod]; -goalw thy [trans_def, rprod_def] - "!!R1 R2. [| trans R1; trans R2 |] ==> trans (rprod R1 R2)"; -by (Simp_tac 1); -by (Blast_tac 1); -qed "trans_rprod"; -AddSIs [trans_rprod]; - (*--------------------------------------------------------------------------- * Wellfoundedness of proper subset on finite sets. diff -r c9c99aa082fb -r 2ee6c397003d src/HOL/WF_Rel.thy --- a/src/HOL/WF_Rel.thy Thu May 22 15:09:09 1997 +0200 +++ b/src/HOL/WF_Rel.thy Thu May 22 15:09:37 1997 +0200 @@ -3,7 +3,11 @@ Author: Konrad Slind Copyright 1995 TU Munich -Derived wellfounded relations: inverse image, relational product, measure, ... +Derived WF relations: inverse image, lexicographic product, measure, ... + +The simple relational product, in which (x',y')<(x,y) iff x' ('a => 'b) => ('a * 'a)set" measure :: "('a => nat) => ('a * 'a)set" "**" :: "[('a*'a)set, ('b*'b)set] => (('a*'b)*('a*'b))set" (infixl 70) - rprod :: "[('a*'a)set, ('b*'b)set] => (('a*'b)*('a*'b))set" finite_psubset :: "('a set * 'a set) set" @@ -27,10 +30,6 @@ p = ((a,b),(a',b')) & ((a,a') : ra | a=a' & (b,b') : rb)}" - rprod_def "rprod ra rb == {p. ? a a' b b'. - p = ((a,b),(a',b')) & - ((a,a') : ra & (b,b') : rb)}" - (* finite proper subset*) finite_psubset_def "finite_psubset == {(A,B). A < B & finite B}" end