# HG changeset patch # User kuncar # Date 1380285806 -7200 # Node ID 2f103a894ebe40c6719b3599ab651b08c854acc9 # Parent b2781a3ce95831c6b57e71e199cccca456b56733 new theory of finite sets as a subtype diff -r b2781a3ce958 -r 2f103a894ebe src/HOL/Library/FSet.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Library/FSet.thy Fri Sep 27 14:43:26 2013 +0200 @@ -0,0 +1,812 @@ +(* Title: HOL/Library/FSet.thy + Author: Ondrej Kuncar, TU Muenchen + Author: Cezary Kaliszyk and Christian Urban +*) + +header {* Type of finite sets defined as a subtype of sets *} + +theory FSet +imports Main Conditionally_Complete_Lattices +begin + +subsection {* Definition of the type *} + +typedef 'a fset = "{A :: 'a set. finite A}" morphisms fset Abs_fset +by auto + +setup_lifting type_definition_fset + +subsection {* Basic operations and type class instantiations *} + +(* FIXME transfer and right_total vs. bi_total *) +instantiation fset :: (finite) finite +begin +instance by default (transfer, simp) +end + +instantiation fset :: (type) "{bounded_lattice_bot, distrib_lattice, minus}" +begin + +interpretation lifting_syntax . + +lift_definition bot_fset :: "'a fset" is "{}" parametric empty_transfer by simp + +lift_definition less_eq_fset :: "'a fset \ 'a fset \ bool" is subset_eq parametric subset_transfer + by simp + +definition less_fset :: "'a fset \ 'a fset \ bool" where "xs < ys \ xs \ ys \ xs \ (ys::'a fset)" + +lemma less_fset_transfer[transfer_rule]: + assumes [transfer_rule]: "bi_unique A" + shows "((pcr_fset A) ===> (pcr_fset A) ===> op =) op \ op <" + unfolding less_fset_def[abs_def] psubset_eq[abs_def] by transfer_prover + + +lift_definition sup_fset :: "'a fset \ 'a fset \ 'a fset" is union parametric union_transfer + by simp + +lift_definition inf_fset :: "'a fset \ 'a fset \ 'a fset" is inter parametric inter_transfer + by simp + +lift_definition minus_fset :: "'a fset \ 'a fset \ 'a fset" is minus parametric Diff_transfer + by simp + +instance +by default (transfer, auto)+ + +end + +abbreviation fempty :: "'a fset" ("{||}") where "{||} \ bot" +abbreviation fsubset_eq :: "'a fset \ 'a fset \ bool" (infix "|\|" 50) where "xs |\| ys \ xs \ ys" +abbreviation fsubset :: "'a fset \ 'a fset \ bool" (infix "|\|" 50) where "xs |\| ys \ xs < ys" +abbreviation funion :: "'a fset \ 'a fset \ 'a fset" (infixl "|\|" 65) where "xs |\| ys \ sup xs ys" +abbreviation finter :: "'a fset \ 'a fset \ 'a fset" (infixl "|\|" 65) where "xs |\| ys \ inf xs ys" +abbreviation fminus :: "'a fset \ 'a fset \ 'a fset" (infixl "|-|" 65) where "xs |-| ys \ minus xs ys" + +instantiation fset :: (type) conditionally_complete_lattice +begin + +interpretation lifting_syntax . + +lemma right_total_Inf_fset_transfer: + assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "right_total A" + shows "(set_rel (set_rel A) ===> set_rel A) + (\S. if finite (Inter S \ Collect (Domainp A)) then Inter S \ Collect (Domainp A) else {}) + (\S. if finite (Inf S) then Inf S else {})" + by transfer_prover + +lemma Inf_fset_transfer: + assumes [transfer_rule]: "bi_unique A" and [transfer_rule]: "bi_total A" + shows "(set_rel (set_rel A) ===> set_rel A) (\A. if finite (Inf A) then Inf A else {}) + (\A. if finite (Inf A) then Inf A else {})" + by transfer_prover + +lift_definition Inf_fset :: "'a fset set \ 'a fset" is "\A. if finite (Inf A) then Inf A else {}" +parametric right_total_Inf_fset_transfer Inf_fset_transfer by simp + +lemma Sup_fset_transfer: + assumes [transfer_rule]: "bi_unique A" + shows "(set_rel (set_rel A) ===> set_rel A) (\A. if finite (Sup A) then Sup A else {}) + (\A. if finite (Sup A) then Sup A else {})" by transfer_prover + +lift_definition Sup_fset :: "'a fset set \ 'a fset" is "\A. if finite (Sup A) then Sup A else {}" +parametric Sup_fset_transfer by simp + +lemma finite_Sup: "\z. finite z \ (\a. a \ X \ a \ z) \ finite (Sup X)" +by (auto intro: finite_subset) + +instance +proof + fix x z :: "'a fset" + fix X :: "'a fset set" + { + assume "x \ X" "(\a. a \ X \ z |\| a)" + then show "Inf X |\| x" by transfer auto + next + assume "X \ {}" "(\x. x \ X \ z |\| x)" + then show "z |\| Inf X" by transfer (clarsimp, blast) + next + assume "x \ X" "(\a. a \ X \ a |\| z)" + then show "x |\| Sup X" by transfer (auto intro!: finite_Sup) + next + assume "X \ {}" "(\x. x \ X \ x |\| z)" + then show "Sup X |\| z" by transfer (clarsimp, blast) + } +qed +end + +instantiation fset :: (finite) complete_lattice +begin + +lift_definition top_fset :: "'a fset" is UNIV parametric right_total_UNIV_transfer UNIV_transfer by simp + +instance by default (transfer, auto)+ +end + +instantiation fset :: (finite) complete_boolean_algebra +begin + +lift_definition uminus_fset :: "'a fset \ 'a fset" is uminus + parametric right_total_Compl_transfer Compl_transfer by simp + +instance by (default, simp_all only: INF_def SUP_def) (transfer, auto)+ + +end + +abbreviation fUNIV :: "'a::finite fset" where "fUNIV \ top" +abbreviation fuminus :: "'a::finite fset \ 'a fset" ("|-| _" [81] 80) where "|-| x \ uminus x" + +subsection {* Other operations *} + +lift_definition finsert :: "'a \ 'a fset \ 'a fset" is insert parametric Lifting_Set.insert_transfer + by simp + +syntax + "_insert_fset" :: "args => 'a fset" ("{|(_)|}") + +translations + "{|x, xs|}" == "CONST finsert x {|xs|}" + "{|x|}" == "CONST finsert x {||}" + +lift_definition fmember :: "'a \ 'a fset \ bool" (infix "|\|" 50) is Set.member + parametric member_transfer by simp + +abbreviation notin_fset :: "'a \ 'a fset \ bool" (infix "|\|" 50) where "x |\| S \ \ (x |\| S)" + +context +begin +interpretation lifting_syntax . + +lift_definition ffilter :: "('a \ bool) \ 'a fset \ 'a fset" is Set.filter + parametric Lifting_Set.filter_transfer unfolding Set.filter_def by simp + +lemma compose_rel_to_Domainp: + assumes "left_unique R" + assumes "(R ===> op=) P P'" + shows "(R OO Lifting.invariant P' OO R\\) x y \ Domainp R x \ P x \ x = y" +using assms unfolding OO_def conversep_iff Domainp_iff left_unique_def fun_rel_def invariant_def +by blast + +lift_definition fPow :: "'a fset \ 'a fset fset" is Pow parametric Pow_transfer +by (subst compose_rel_to_Domainp [OF _ finite_transfer]) (auto intro: transfer_raw finite_subset + simp add: fset.pcr_cr_eq[symmetric] Domainp_set fset.domain_eq) + +lift_definition fcard :: "'a fset \ nat" is card parametric card_transfer by simp + +lift_definition fimage :: "('a \ 'b) \ 'a fset \ 'b fset" (infixr "|`|" 90) is image + parametric image_transfer by simp + +lift_definition fthe_elem :: "'a fset \ 'a" is the_elem .. + +(* FIXME why is not invariant here unfolded ? *) +lift_definition fbind :: "'a fset \ ('a \ 'b fset) \ 'b fset" is Set.bind parametric bind_transfer +unfolding invariant_def Set.bind_def by clarsimp metis + +lift_definition ffUnion :: "'a fset fset \ 'a fset" is Union parametric Union_transfer +by (subst(asm) compose_rel_to_Domainp [OF _ finite_transfer]) + (auto intro: transfer_raw simp add: fset.pcr_cr_eq[symmetric] Domainp_set fset.domain_eq invariant_def) + +lift_definition fBall :: "'a fset \ ('a \ bool) \ bool" is Ball parametric Ball_transfer .. +lift_definition fBex :: "'a fset \ ('a \ bool) \ bool" is Bex parametric Bex_transfer .. + +subsection {* Transferred lemmas from Set.thy *} + +lemmas fset_eqI = set_eqI[Transfer.transferred] +lemmas fset_eq_iff[no_atp] = set_eq_iff[Transfer.transferred] +lemmas fBallI[intro!] = ballI[Transfer.transferred] +lemmas fbspec[dest?] = bspec[Transfer.transferred] +lemmas fBallE[elim] = ballE[Transfer.transferred] +lemmas fBexI[intro] = bexI[Transfer.transferred] +lemmas rev_fBexI[intro?] = rev_bexI[Transfer.transferred] +lemmas fBexCI = bexCI[Transfer.transferred] +lemmas fBexE[elim!] = bexE[Transfer.transferred] +lemmas fBall_triv[simp] = ball_triv[Transfer.transferred] +lemmas fBex_triv[simp] = bex_triv[Transfer.transferred] +lemmas fBex_triv_one_point1[simp] = bex_triv_one_point1[Transfer.transferred] +lemmas fBex_triv_one_point2[simp] = bex_triv_one_point2[Transfer.transferred] +lemmas fBex_one_point1[simp] = bex_one_point1[Transfer.transferred] +lemmas fBex_one_point2[simp] = bex_one_point2[Transfer.transferred] +lemmas fBall_one_point1[simp] = ball_one_point1[Transfer.transferred] +lemmas fBall_one_point2[simp] = ball_one_point2[Transfer.transferred] +lemmas fBall_conj_distrib = ball_conj_distrib[Transfer.transferred] +lemmas fBex_disj_distrib = bex_disj_distrib[Transfer.transferred] +lemmas fBall_cong = ball_cong[Transfer.transferred] +lemmas fBex_cong = bex_cong[Transfer.transferred] +lemmas subfsetI[intro!] = subsetI[Transfer.transferred] +lemmas subfsetD[elim, intro?] = subsetD[Transfer.transferred] +lemmas rev_subfsetD[no_atp,intro?] = rev_subsetD[Transfer.transferred] +lemmas subfsetCE[no_atp,elim] = subsetCE[Transfer.transferred] +lemmas subfset_eq[no_atp] = subset_eq[Transfer.transferred] +lemmas contra_subfsetD[no_atp] = contra_subsetD[Transfer.transferred] +lemmas subfset_refl = subset_refl[Transfer.transferred] +lemmas subfset_trans = subset_trans[Transfer.transferred] +lemmas fset_rev_mp = set_rev_mp[Transfer.transferred] +lemmas fset_mp = set_mp[Transfer.transferred] +lemmas subfset_not_subfset_eq[code] = subset_not_subset_eq[Transfer.transferred] +lemmas eq_fmem_trans = eq_mem_trans[Transfer.transferred] +lemmas subfset_antisym[intro!] = subset_antisym[Transfer.transferred] +lemmas fequalityD1 = equalityD1[Transfer.transferred] +lemmas fequalityD2 = equalityD2[Transfer.transferred] +lemmas fequalityE = equalityE[Transfer.transferred] +lemmas fequalityCE[elim] = equalityCE[Transfer.transferred] +lemmas eqfset_imp_iff = eqset_imp_iff[Transfer.transferred] +lemmas eqfelem_imp_iff = eqelem_imp_iff[Transfer.transferred] +lemmas fempty_iff[simp] = empty_iff[Transfer.transferred] +lemmas fempty_subfsetI[iff] = empty_subsetI[Transfer.transferred] +lemmas equalsffemptyI = equals0I[Transfer.transferred] +lemmas equalsffemptyD = equals0D[Transfer.transferred] +lemmas fBall_fempty[simp] = ball_empty[Transfer.transferred] +lemmas fBex_fempty[simp] = bex_empty[Transfer.transferred] +lemmas fPow_iff[iff] = Pow_iff[Transfer.transferred] +lemmas fPowI = PowI[Transfer.transferred] +lemmas fPowD = PowD[Transfer.transferred] +lemmas fPow_bottom = Pow_bottom[Transfer.transferred] +lemmas fPow_top = Pow_top[Transfer.transferred] +lemmas fPow_not_fempty = Pow_not_empty[Transfer.transferred] +lemmas finter_iff[simp] = Int_iff[Transfer.transferred] +lemmas finterI[intro!] = IntI[Transfer.transferred] +lemmas finterD1 = IntD1[Transfer.transferred] +lemmas finterD2 = IntD2[Transfer.transferred] +lemmas finterE[elim!] = IntE[Transfer.transferred] +lemmas funion_iff[simp] = Un_iff[Transfer.transferred] +lemmas funionI1[elim?] = UnI1[Transfer.transferred] +lemmas funionI2[elim?] = UnI2[Transfer.transferred] +lemmas funionCI[intro!] = UnCI[Transfer.transferred] +lemmas funionE[elim!] = UnE[Transfer.transferred] +lemmas fminus_iff[simp] = Diff_iff[Transfer.transferred] +lemmas fminusI[intro!] = DiffI[Transfer.transferred] +lemmas fminusD1 = DiffD1[Transfer.transferred] +lemmas fminusD2 = DiffD2[Transfer.transferred] +lemmas fminusE[elim!] = DiffE[Transfer.transferred] +lemmas finsert_iff[simp] = insert_iff[Transfer.transferred] +lemmas finsertI1 = insertI1[Transfer.transferred] +lemmas finsertI2 = insertI2[Transfer.transferred] +lemmas finsertE[elim!] = insertE[Transfer.transferred] +lemmas finsertCI[intro!] = insertCI[Transfer.transferred] +lemmas subfset_finsert_iff = subset_insert_iff[Transfer.transferred] +lemmas finsert_ident = insert_ident[Transfer.transferred] +lemmas fsingletonI[intro!,no_atp] = singletonI[Transfer.transferred] +lemmas fsingletonD[dest!,no_atp] = singletonD[Transfer.transferred] +lemmas fsingleton_iff = singleton_iff[Transfer.transferred] +lemmas fsingleton_inject[dest!] = singleton_inject[Transfer.transferred] +lemmas fsingleton_finsert_inj_eq[iff,no_atp] = singleton_insert_inj_eq[Transfer.transferred] +lemmas fsingleton_finsert_inj_eq'[iff,no_atp] = singleton_insert_inj_eq'[Transfer.transferred] +lemmas subfset_fsingletonD = subset_singletonD[Transfer.transferred] +lemmas fminus_single_finsert = diff_single_insert[Transfer.transferred] +lemmas fdoubleton_eq_iff = doubleton_eq_iff[Transfer.transferred] +lemmas funion_fsingleton_iff = Un_singleton_iff[Transfer.transferred] +lemmas fsingleton_funion_iff = singleton_Un_iff[Transfer.transferred] +lemmas fimage_eqI[simp, intro] = image_eqI[Transfer.transferred] +lemmas fimageI = imageI[Transfer.transferred] +lemmas rev_fimage_eqI = rev_image_eqI[Transfer.transferred] +lemmas fimageE[elim!] = imageE[Transfer.transferred] +lemmas Compr_fimage_eq = Compr_image_eq[Transfer.transferred] +lemmas fimage_funion = image_Un[Transfer.transferred] +lemmas fimage_iff = image_iff[Transfer.transferred] +lemmas fimage_subfset_iff[no_atp] = image_subset_iff[Transfer.transferred] +lemmas fimage_subfsetI = image_subsetI[Transfer.transferred] +lemmas fimage_ident[simp] = image_ident[Transfer.transferred] +lemmas split_if_fmem1 = split_if_mem1[Transfer.transferred] +lemmas split_if_fmem2 = split_if_mem2[Transfer.transferred] +lemmas psubfsetI[intro!,no_atp] = psubsetI[Transfer.transferred] +lemmas psubfsetE[elim!,no_atp] = psubsetE[Transfer.transferred] +lemmas psubfset_finsert_iff = psubset_insert_iff[Transfer.transferred] +lemmas psubfset_eq = psubset_eq[Transfer.transferred] +lemmas psubfset_imp_subfset = psubset_imp_subset[Transfer.transferred] +lemmas psubfset_trans = psubset_trans[Transfer.transferred] +lemmas psubfsetD = psubsetD[Transfer.transferred] +lemmas psubfset_subfset_trans = psubset_subset_trans[Transfer.transferred] +lemmas subfset_psubfset_trans = subset_psubset_trans[Transfer.transferred] +lemmas psubfset_imp_ex_fmem = psubset_imp_ex_mem[Transfer.transferred] +lemmas fimage_fPow_mono = image_Pow_mono[Transfer.transferred] +lemmas fimage_fPow_surj = image_Pow_surj[Transfer.transferred] +lemmas subfset_finsertI = subset_insertI[Transfer.transferred] +lemmas subfset_finsertI2 = subset_insertI2[Transfer.transferred] +lemmas subfset_finsert = subset_insert[Transfer.transferred] +lemmas funion_upper1 = Un_upper1[Transfer.transferred] +lemmas funion_upper2 = Un_upper2[Transfer.transferred] +lemmas funion_least = Un_least[Transfer.transferred] +lemmas finter_lower1 = Int_lower1[Transfer.transferred] +lemmas finter_lower2 = Int_lower2[Transfer.transferred] +lemmas finter_greatest = Int_greatest[Transfer.transferred] +lemmas fminus_subfset = Diff_subset[Transfer.transferred] +lemmas fminus_subfset_conv = Diff_subset_conv[Transfer.transferred] +lemmas subfset_fempty[simp] = subset_empty[Transfer.transferred] +lemmas not_psubfset_fempty[iff] = not_psubset_empty[Transfer.transferred] +lemmas finsert_is_funion = insert_is_Un[Transfer.transferred] +lemmas finsert_not_fempty[simp] = insert_not_empty[Transfer.transferred] +lemmas fempty_not_finsert = empty_not_insert[Transfer.transferred] +lemmas finsert_absorb = insert_absorb[Transfer.transferred] +lemmas finsert_absorb2[simp] = insert_absorb2[Transfer.transferred] +lemmas finsert_commute = insert_commute[Transfer.transferred] +lemmas finsert_subfset[simp] = insert_subset[Transfer.transferred] +lemmas finsert_inter_finsert[simp] = insert_inter_insert[Transfer.transferred] +lemmas finsert_disjoint[simp,no_atp] = insert_disjoint[Transfer.transferred] +lemmas disjoint_finsert[simp,no_atp] = disjoint_insert[Transfer.transferred] +lemmas fimage_fempty[simp] = image_empty[Transfer.transferred] +lemmas fimage_finsert[simp] = image_insert[Transfer.transferred] +lemmas fimage_constant = image_constant[Transfer.transferred] +lemmas fimage_constant_conv = image_constant_conv[Transfer.transferred] +lemmas fimage_fimage = image_image[Transfer.transferred] +lemmas finsert_fimage[simp] = insert_image[Transfer.transferred] +lemmas fimage_is_fempty[iff] = image_is_empty[Transfer.transferred] +lemmas fempty_is_fimage[iff] = empty_is_image[Transfer.transferred] +lemmas fimage_cong = image_cong[Transfer.transferred] +lemmas fimage_finter_subfset = image_Int_subset[Transfer.transferred] +lemmas fimage_fminus_subfset = image_diff_subset[Transfer.transferred] +lemmas finter_absorb = Int_absorb[Transfer.transferred] +lemmas finter_left_absorb = Int_left_absorb[Transfer.transferred] +lemmas finter_commute = Int_commute[Transfer.transferred] +lemmas finter_left_commute = Int_left_commute[Transfer.transferred] +lemmas finter_assoc = Int_assoc[Transfer.transferred] +lemmas finter_ac = Int_ac[Transfer.transferred] +lemmas finter_absorb1 = Int_absorb1[Transfer.transferred] +lemmas finter_absorb2 = Int_absorb2[Transfer.transferred] +lemmas finter_fempty_left = Int_empty_left[Transfer.transferred] +lemmas finter_fempty_right = Int_empty_right[Transfer.transferred] +lemmas disjoint_iff_fnot_equal = disjoint_iff_not_equal[Transfer.transferred] +lemmas finter_funion_distrib = Int_Un_distrib[Transfer.transferred] +lemmas finter_funion_distrib2 = Int_Un_distrib2[Transfer.transferred] +lemmas finter_subfset_iff[no_atp, simp] = Int_subset_iff[Transfer.transferred] +lemmas funion_absorb = Un_absorb[Transfer.transferred] +lemmas funion_left_absorb = Un_left_absorb[Transfer.transferred] +lemmas funion_commute = Un_commute[Transfer.transferred] +lemmas funion_left_commute = Un_left_commute[Transfer.transferred] +lemmas funion_assoc = Un_assoc[Transfer.transferred] +lemmas funion_ac = Un_ac[Transfer.transferred] +lemmas funion_absorb1 = Un_absorb1[Transfer.transferred] +lemmas funion_absorb2 = Un_absorb2[Transfer.transferred] +lemmas funion_fempty_left = Un_empty_left[Transfer.transferred] +lemmas funion_fempty_right = Un_empty_right[Transfer.transferred] +lemmas funion_finsert_left[simp] = Un_insert_left[Transfer.transferred] +lemmas funion_finsert_right[simp] = Un_insert_right[Transfer.transferred] +lemmas finter_finsert_left = Int_insert_left[Transfer.transferred] +lemmas finter_finsert_left_ifffempty[simp] = Int_insert_left_if0[Transfer.transferred] +lemmas finter_finsert_left_if1[simp] = Int_insert_left_if1[Transfer.transferred] +lemmas finter_finsert_right = Int_insert_right[Transfer.transferred] +lemmas finter_finsert_right_ifffempty[simp] = Int_insert_right_if0[Transfer.transferred] +lemmas finter_finsert_right_if1[simp] = Int_insert_right_if1[Transfer.transferred] +lemmas funion_finter_distrib = Un_Int_distrib[Transfer.transferred] +lemmas funion_finter_distrib2 = Un_Int_distrib2[Transfer.transferred] +lemmas funion_finter_crazy = Un_Int_crazy[Transfer.transferred] +lemmas subfset_funion_eq = subset_Un_eq[Transfer.transferred] +lemmas funion_fempty[iff] = Un_empty[Transfer.transferred] +lemmas funion_subfset_iff[no_atp, simp] = Un_subset_iff[Transfer.transferred] +lemmas funion_fminus_finter = Un_Diff_Int[Transfer.transferred] +lemmas fminus_finter2 = Diff_Int2[Transfer.transferred] +lemmas funion_finter_assoc_eq = Un_Int_assoc_eq[Transfer.transferred] +lemmas fBall_funion = ball_Un[Transfer.transferred] +lemmas fBex_funion = bex_Un[Transfer.transferred] +lemmas fminus_eq_fempty_iff[simp,no_atp] = Diff_eq_empty_iff[Transfer.transferred] +lemmas fminus_cancel[simp] = Diff_cancel[Transfer.transferred] +lemmas fminus_idemp[simp] = Diff_idemp[Transfer.transferred] +lemmas fminus_triv = Diff_triv[Transfer.transferred] +lemmas fempty_fminus[simp] = empty_Diff[Transfer.transferred] +lemmas fminus_fempty[simp] = Diff_empty[Transfer.transferred] +lemmas fminus_finsertffempty[simp,no_atp] = Diff_insert0[Transfer.transferred] +lemmas fminus_finsert = Diff_insert[Transfer.transferred] +lemmas fminus_finsert2 = Diff_insert2[Transfer.transferred] +lemmas finsert_fminus_if = insert_Diff_if[Transfer.transferred] +lemmas finsert_fminus1[simp] = insert_Diff1[Transfer.transferred] +lemmas finsert_fminus_single[simp] = insert_Diff_single[Transfer.transferred] +lemmas finsert_fminus = insert_Diff[Transfer.transferred] +lemmas fminus_finsert_absorb = Diff_insert_absorb[Transfer.transferred] +lemmas fminus_disjoint[simp] = Diff_disjoint[Transfer.transferred] +lemmas fminus_partition = Diff_partition[Transfer.transferred] +lemmas double_fminus = double_diff[Transfer.transferred] +lemmas funion_fminus_cancel[simp] = Un_Diff_cancel[Transfer.transferred] +lemmas funion_fminus_cancel2[simp] = Un_Diff_cancel2[Transfer.transferred] +lemmas fminus_funion = Diff_Un[Transfer.transferred] +lemmas fminus_finter = Diff_Int[Transfer.transferred] +lemmas funion_fminus = Un_Diff[Transfer.transferred] +lemmas finter_fminus = Int_Diff[Transfer.transferred] +lemmas fminus_finter_distrib = Diff_Int_distrib[Transfer.transferred] +lemmas fminus_finter_distrib2 = Diff_Int_distrib2[Transfer.transferred] +lemmas fUNIV_bool[no_atp] = UNIV_bool[Transfer.transferred] +lemmas fPow_fempty[simp] = Pow_empty[Transfer.transferred] +lemmas fPow_finsert = Pow_insert[Transfer.transferred] +lemmas funion_fPow_subfset = Un_Pow_subset[Transfer.transferred] +lemmas fPow_finter_eq[simp] = Pow_Int_eq[Transfer.transferred] +lemmas fset_eq_subfset = set_eq_subset[Transfer.transferred] +lemmas subfset_iff[no_atp] = subset_iff[Transfer.transferred] +lemmas subfset_iff_psubfset_eq = subset_iff_psubset_eq[Transfer.transferred] +lemmas all_not_fin_conv[simp] = all_not_in_conv[Transfer.transferred] +lemmas ex_fin_conv = ex_in_conv[Transfer.transferred] +lemmas fimage_mono = image_mono[Transfer.transferred] +lemmas fPow_mono = Pow_mono[Transfer.transferred] +lemmas finsert_mono = insert_mono[Transfer.transferred] +lemmas funion_mono = Un_mono[Transfer.transferred] +lemmas finter_mono = Int_mono[Transfer.transferred] +lemmas fminus_mono = Diff_mono[Transfer.transferred] +lemmas fin_mono = in_mono[Transfer.transferred] +lemmas fthe_felem_eq[simp] = the_elem_eq[Transfer.transferred] +lemmas fLeast_mono = Least_mono[Transfer.transferred] +lemmas fbind_fbind = bind_bind[Transfer.transferred] +lemmas fempty_fbind[simp] = empty_bind[Transfer.transferred] +lemmas nonfempty_fbind_const = nonempty_bind_const[Transfer.transferred] +lemmas fbind_const = bind_const[Transfer.transferred] +lemmas ffmember_filter[simp] = member_filter[Transfer.transferred] +lemmas fequalityI = equalityI[Transfer.transferred] + +subsection {* Additional lemmas*} + +subsubsection {* fsingleton *} + +lemmas fsingletonE = fsingletonD [elim_format] + +subsubsection {* femepty *} + +lemma fempty_ffilter[simp]: "ffilter (\_. False) A = {||}" +by transfer auto + +(* FIXME, transferred doesn't work here *) +lemma femptyE [elim!]: "a |\| {||} \ P" + by simp + +subsubsection {* fset *} + +lemmas fset_simp[simp] = bot_fset.rep_eq finsert.rep_eq + +lemma finite_fset [simp]: + shows "finite (fset S)" + by transfer simp + +lemmas fset_cong[simp] = fset_inject + +lemma filter_fset [simp]: + shows "fset (ffilter P xs) = Collect P \ fset xs" + by transfer auto + +lemmas inter_fset [simp] = inf_fset.rep_eq + +lemmas union_fset [simp] = sup_fset.rep_eq + +lemmas minus_fset [simp] = minus_fset.rep_eq + +subsubsection {* filter_fset *} + +lemma subset_ffilter: + "ffilter P A |\| ffilter Q A = (\ x. x |\| A \ P x \ Q x)" + by transfer auto + +lemma eq_ffilter: + "(ffilter P A = ffilter Q A) = (\x. x |\| A \ P x = Q x)" + by transfer auto + +lemma psubset_ffilter: + "(\x. x |\| A \ P x \ Q x) \ (x |\| A & \ P x & Q x) \ + ffilter P A |\| ffilter Q A" + unfolding less_fset_def by (auto simp add: subset_ffilter eq_ffilter) + +subsubsection {* insert *} + +(* FIXME, transferred doesn't work here *) +lemma set_finsert: + assumes "x |\| A" + obtains B where "A = finsert x B" and "x |\| B" +using assms by transfer (metis Set.set_insert finite_insert) + +lemma mk_disjoint_finsert: "a |\| A \ \B. A = finsert a B \ a |\| B" + by (rule_tac x = "A |-| {|a|}" in exI, blast) + +subsubsection {* image *} + +lemma subset_fimage_iff: "(B |\| f|`|A) = (\ AA. AA |\| A \ B = f|`|AA)" +by transfer (metis mem_Collect_eq rev_finite_subset subset_image_iff) + +subsubsection {* bounded quantification *} + +lemma bex_simps [simp, no_atp]: + "\A P Q. fBex A (\x. P x \ Q) = (fBex A P \ Q)" + "\A P Q. fBex A (\x. P \ Q x) = (P \ fBex A Q)" + "\P. fBex {||} P = False" + "\a B P. fBex (finsert a B) P = (P a \ fBex B P)" + "\A P f. fBex (f |`| A) P = fBex A (\x. P (f x))" + "\A P. (\ fBex A P) = fBall A (\x. \ P x)" +by auto + +lemma ball_simps [simp, no_atp]: + "\A P Q. fBall A (\x. P x \ Q) = (fBall A P \ Q)" + "\A P Q. fBall A (\x. P \ Q x) = (P \ fBall A Q)" + "\A P Q. fBall A (\x. P \ Q x) = (P \ fBall A Q)" + "\A P Q. fBall A (\x. P x \ Q) = (fBex A P \ Q)" + "\P. fBall {||} P = True" + "\a B P. fBall (finsert a B) P = (P a \ fBall B P)" + "\A P f. fBall (f |`| A) P = fBall A (\x. P (f x))" + "\A P. (\ fBall A P) = fBex A (\x. \ P x)" +by auto + +lemma atomize_fBall: + "(\x. x |\| A ==> P x) == Trueprop (fBall A (\x. P x))" +apply (simp only: atomize_all atomize_imp) +apply (rule equal_intr_rule) +by (transfer, simp)+ + +subsection {* Choice in fsets *} + +lemma fset_choice: + assumes "\x. x |\| A \ (\y. P x y)" + shows "\f. \x. x |\| A \ P x (f x)" + using assms by transfer metis + +subsection {* Induction and Cases rules for fsets *} + +lemma fset_exhaust [case_names empty insert, cases type: fset]: + assumes fempty_case: "S = {||} \ P" + and finsert_case: "\x S'. S = finsert x S' \ P" + shows "P" + using assms by transfer blast + +lemma fset_induct [case_names empty insert]: + assumes fempty_case: "P {||}" + and finsert_case: "\x S. P S \ P (finsert x S)" + shows "P S" +proof - + (* FIXME transfer and right_total vs. bi_total *) + note Domainp_forall_transfer[transfer_rule] + show ?thesis + using assms by transfer (auto intro: finite_induct) +qed + +lemma fset_induct_stronger [case_names empty insert, induct type: fset]: + assumes empty_fset_case: "P {||}" + and insert_fset_case: "\x S. \x |\| S; P S\ \ P (finsert x S)" + shows "P S" +proof - + (* FIXME transfer and right_total vs. bi_total *) + note Domainp_forall_transfer[transfer_rule] + show ?thesis + using assms by transfer (auto intro: finite_induct) +qed + +lemma fset_card_induct: + assumes empty_fset_case: "P {||}" + and card_fset_Suc_case: "\S T. Suc (fcard S) = (fcard T) \ P S \ P T" + shows "P S" +proof (induct S) + case empty + show "P {||}" by (rule empty_fset_case) +next + case (insert x S) + have h: "P S" by fact + have "x |\| S" by fact + then have "Suc (fcard S) = fcard (finsert x S)" + by transfer auto + then show "P (finsert x S)" + using h card_fset_Suc_case by simp +qed + +lemma fset_strong_cases: + obtains "xs = {||}" + | ys x where "x |\| ys" and "xs = finsert x ys" +by transfer blast + +lemma fset_induct2: + "P {||} {||} \ + (\x xs. x |\| xs \ P (finsert x xs) {||}) \ + (\y ys. y |\| ys \ P {||} (finsert y ys)) \ + (\x xs y ys. \P xs ys; x |\| xs; y |\| ys\ \ P (finsert x xs) (finsert y ys)) \ + P xsa ysa" + apply (induct xsa arbitrary: ysa) + apply (induct_tac x rule: fset_induct_stronger) + apply simp_all + apply (induct_tac xa rule: fset_induct_stronger) + apply simp_all + done + +subsection {* Setup for Lifting/Transfer *} + +subsubsection {* Relator and predicator properties *} + +lift_definition fset_rel :: "('a \ 'b \ bool) \ 'a fset \ 'b fset \ bool" is set_rel +parametric set_rel_transfer .. + +lemma fset_rel_alt_def: "fset_rel R = (\A B. (\x.\y. x|\|A \ y|\|B \ R x y) + \ (\y. \x. y|\|B \ x|\|A \ R x y))" +apply (rule ext)+ +apply transfer' +apply (subst set_rel_def[unfolded fun_eq_iff]) +by blast + +lemma fset_rel_conversep: "fset_rel (conversep R) = conversep (fset_rel R)" + unfolding fset_rel_alt_def by auto + +lemmas fset_rel_eq [relator_eq] = set_rel_eq[Transfer.transferred] + +lemma fset_rel_mono[relator_mono]: "A \ B \ fset_rel A \ fset_rel B" +unfolding fset_rel_alt_def by blast + +lemma finite_set_rel: + assumes fin: "finite X" "finite Z" + assumes R_S: "set_rel (R OO S) X Z" + shows "\Y. finite Y \ set_rel R X Y \ set_rel S Y Z" +proof - + obtain f where f: "\x\X. R x (f x) \ (\z\Z. S (f x) z)" + apply atomize_elim + apply (subst bchoice_iff[symmetric]) + using R_S[unfolded set_rel_def OO_def] by blast + + obtain g where g: "\z\Z. S (g z) z \ (\x\X. R x (g z))" + apply atomize_elim + apply (subst bchoice_iff[symmetric]) + using R_S[unfolded set_rel_def OO_def] by blast + + let ?Y = "f ` X \ g ` Z" + have "finite ?Y" by (simp add: fin) + moreover have "set_rel R X ?Y" + unfolding set_rel_def + using f g by clarsimp blast + moreover have "set_rel S ?Y Z" + unfolding set_rel_def + using f g by clarsimp blast + ultimately show ?thesis by metis +qed + +lemma fset_rel_OO[relator_distr]: "fset_rel R OO fset_rel S = fset_rel (R OO S)" +apply (rule ext)+ +by transfer (auto intro: finite_set_rel set_rel_OO[unfolded fun_eq_iff, rule_format, THEN iffD1]) + +lemma Domainp_fset[relator_domain]: + assumes "Domainp T = P" + shows "Domainp (fset_rel T) = (\A. fBall A P)" +proof - + from assms obtain f where f: "\x\Collect P. T x (f x)" + unfolding Domainp_iff[abs_def] + apply atomize_elim + by (subst bchoice_iff[symmetric]) auto + from assms f show ?thesis + unfolding fun_eq_iff fset_rel_alt_def Domainp_iff + apply clarify + apply (rule iffI) + apply blast + by (rename_tac A, rule_tac x="f |`| A" in exI, blast) +qed + +lemmas reflp_fset_rel[reflexivity_rule] = reflp_set_rel[Transfer.transferred] + +lemma right_total_fset_rel[transfer_rule]: "right_total A \ right_total (fset_rel A)" +unfolding right_total_def +apply transfer +apply (subst(asm) choice_iff) +apply clarsimp +apply (rename_tac A f y, rule_tac x = "f ` y" in exI) +by (auto simp add: set_rel_def) + +lemma left_total_fset_rel[reflexivity_rule]: "left_total A \ left_total (fset_rel A)" +unfolding left_total_def +apply transfer +apply (subst(asm) choice_iff) +apply clarsimp +apply (rename_tac A f y, rule_tac x = "f ` y" in exI) +by (auto simp add: set_rel_def) + +lemmas right_unique_fset_rel[transfer_rule] = right_unique_set_rel[Transfer.transferred] +lemmas left_unique_fset_rel[reflexivity_rule] = left_unique_set_rel[Transfer.transferred] + +thm right_unique_fset_rel left_unique_fset_rel + +lemma bi_unique_fset_rel[transfer_rule]: "bi_unique A \ bi_unique (fset_rel A)" +by (auto intro: right_unique_fset_rel left_unique_fset_rel iff: bi_unique_iff) + +lemma bi_total_fset_rel[transfer_rule]: "bi_total A \ bi_total (fset_rel A)" +by (auto intro: right_total_fset_rel left_total_fset_rel iff: bi_total_iff) + +lemmas fset_invariant_commute [invariant_commute] = set_invariant_commute[Transfer.transferred] + +subsubsection {* Quotient theorem for the Lifting package *} + +lemma Quotient_fset_map[quot_map]: + assumes "Quotient R Abs Rep T" + shows "Quotient (fset_rel R) (fimage Abs) (fimage Rep) (fset_rel T)" + using assms unfolding Quotient_alt_def4 + by (simp add: fset_rel_OO[symmetric] fset_rel_conversep) (simp add: fset_rel_alt_def, blast) + +subsubsection {* Transfer rules for the Transfer package *} + +text {* Unconditional transfer rules *} + +lemmas fempty_transfer [transfer_rule] = empty_transfer[Transfer.transferred] + +lemma finsert_transfer [transfer_rule]: + "(A ===> fset_rel A ===> fset_rel A) finsert finsert" + unfolding fun_rel_def fset_rel_alt_def by blast + +lemma funion_transfer [transfer_rule]: + "(fset_rel A ===> fset_rel A ===> fset_rel A) funion funion" + unfolding fun_rel_def fset_rel_alt_def by blast + +lemma ffUnion_transfer [transfer_rule]: + "(fset_rel (fset_rel A) ===> fset_rel A) ffUnion ffUnion" + unfolding fun_rel_def fset_rel_alt_def by transfer (simp, fast) + +lemma fimage_transfer [transfer_rule]: + "((A ===> B) ===> fset_rel A ===> fset_rel B) fimage fimage" + unfolding fun_rel_def fset_rel_alt_def by simp blast + +lemma fBall_transfer [transfer_rule]: + "(fset_rel A ===> (A ===> op =) ===> op =) fBall fBall" + unfolding fset_rel_alt_def fun_rel_def by blast + +lemma fBex_transfer [transfer_rule]: + "(fset_rel A ===> (A ===> op =) ===> op =) fBex fBex" + unfolding fset_rel_alt_def fun_rel_def by blast + +(* FIXME transfer doesn't work here *) +lemma fPow_transfer [transfer_rule]: + "(fset_rel A ===> fset_rel (fset_rel A)) fPow fPow" + unfolding fun_rel_def + using Pow_transfer[unfolded fun_rel_def, rule_format, Transfer.transferred] + by blast + +lemma fset_rel_transfer [transfer_rule]: + "((A ===> B ===> op =) ===> fset_rel A ===> fset_rel B ===> op =) + fset_rel fset_rel" + unfolding fun_rel_def + using set_rel_transfer[unfolded fun_rel_def,rule_format, Transfer.transferred, where A = A and B = B] + by simp + +lemma bind_transfer [transfer_rule]: + "(fset_rel A ===> (A ===> fset_rel B) ===> fset_rel B) fbind fbind" + using assms unfolding fun_rel_def + using bind_transfer[unfolded fun_rel_def, rule_format, Transfer.transferred] by blast + +text {* Rules requiring bi-unique, bi-total or right-total relations *} + +lemma fmember_transfer [transfer_rule]: + assumes "bi_unique A" + shows "(A ===> fset_rel A ===> op =) (op |\|) (op |\|)" + using assms unfolding fun_rel_def fset_rel_alt_def bi_unique_def by metis + +lemma finter_transfer [transfer_rule]: + assumes "bi_unique A" + shows "(fset_rel A ===> fset_rel A ===> fset_rel A) finter finter" + using assms unfolding fun_rel_def + using inter_transfer[unfolded fun_rel_def, rule_format, Transfer.transferred] by blast + +lemma fDiff_transfer [transfer_rule]: + assumes "bi_unique A" + shows "(fset_rel A ===> fset_rel A ===> fset_rel A) (op |-|) (op |-|)" + using assms unfolding fun_rel_def + using Diff_transfer[unfolded fun_rel_def, rule_format, Transfer.transferred] by blast + +lemma fsubset_transfer [transfer_rule]: + assumes "bi_unique A" + shows "(fset_rel A ===> fset_rel A ===> op =) (op |\|) (op |\|)" + using assms unfolding fun_rel_def + using subset_transfer[unfolded fun_rel_def, rule_format, Transfer.transferred] by blast + +lemma fSup_transfer [transfer_rule]: + "bi_unique A \ (set_rel (fset_rel A) ===> fset_rel A) Sup Sup" + using assms unfolding fun_rel_def + apply clarify + apply transfer' + using Sup_fset_transfer[unfolded fun_rel_def] by blast + +(* FIXME: add right_total_fInf_transfer *) + +lemma fInf_transfer [transfer_rule]: + assumes "bi_unique A" and "bi_total A" + shows "(set_rel (fset_rel A) ===> fset_rel A) Inf Inf" + using assms unfolding fun_rel_def + apply clarify + apply transfer' + using Inf_fset_transfer[unfolded fun_rel_def] by blast + +lemma ffilter_transfer [transfer_rule]: + assumes "bi_unique A" + shows "((A ===> op=) ===> fset_rel A ===> fset_rel A) ffilter ffilter" + using assms unfolding fun_rel_def + using Lifting_Set.filter_transfer[unfolded fun_rel_def, rule_format, Transfer.transferred] by blast + +lemma card_transfer [transfer_rule]: + "bi_unique A \ (fset_rel A ===> op =) fcard fcard" + using assms unfolding fun_rel_def + using card_transfer[unfolded fun_rel_def, rule_format, Transfer.transferred] by blast + +end + +lifting_update fset.lifting +lifting_forget fset.lifting + +end + diff -r b2781a3ce958 -r 2f103a894ebe src/HOL/Library/Library.thy --- a/src/HOL/Library/Library.thy Fri Sep 27 14:43:26 2013 +0200 +++ b/src/HOL/Library/Library.thy Fri Sep 27 14:43:26 2013 +0200 @@ -23,6 +23,7 @@ Float Formal_Power_Series Fraction_Field + FSet FuncSet Function_Division Function_Growth