# HG changeset patch # User nipkow # Date 1513189699 -3600 # Node ID 2f213405cc0eefee5e2b29f7cb223aa39a3690ce # Parent 9bfe7908444345f9bac9aa60b75eac0f84cc4888 added lemmas diff -r 9bfe79084443 -r 2f213405cc0e src/HOL/List.thy --- a/src/HOL/List.thy Wed Dec 13 13:25:14 2017 +0100 +++ b/src/HOL/List.thy Wed Dec 13 19:28:19 2017 +0100 @@ -4814,6 +4814,9 @@ lemma f_arg_min_list_f: "xs \ [] \ f (arg_min_list f xs) = Min (f ` (set xs))" by(induction f xs rule: arg_min_list.induct) (auto simp: min_def intro!: antisym) +lemma arg_min_list_in: "xs \ [] \ arg_min_list f xs \ set xs" +by(induction xs rule: induct_list012) (auto simp: Let_def) + subsubsection \(In)finiteness\