# HG changeset patch # User huffman # Date 1394819983 25200 # Node ID 30bbc100d6900462a5c63dee54641ae854506450 # Parent ede82d6e0abdbde8cd1bb1cd3ee77c2a3980ccc3 remove unused lemma which was a direct consequence of tendsto_intros diff -r ede82d6e0abd -r 30bbc100d690 src/HOL/Multivariate_Analysis/Derivative.thy --- a/src/HOL/Multivariate_Analysis/Derivative.thy Fri Mar 14 19:15:50 2014 +0100 +++ b/src/HOL/Multivariate_Analysis/Derivative.thy Fri Mar 14 10:59:43 2014 -0700 @@ -293,20 +293,6 @@ subsection {* Differentiability implies continuity *} -lemma Lim_mul_norm_within: - fixes f :: "'a::real_normed_vector \ 'b::real_normed_vector" - shows "(f ---> 0) (at a within s) \ ((\x. norm(x - a) *\<^sub>R f x) ---> 0) (at a within s)" - unfolding Lim_within - apply (auto simp: ) - apply (erule_tac x=e in allE) - apply (auto simp: ) - apply (rule_tac x="min d 1" in exI) - apply (auto simp: ) - apply (erule_tac x=x in ballE) - unfolding dist_norm diff_0_right - apply (auto intro!: mult_strict_mono[of _ "1::real", unfolded mult_1_left]) - done - lemma differentiable_imp_continuous_within: "f differentiable (at x within s) \ continuous (at x within s) f" by (auto simp: differentiable_def intro: FDERIV_continuous)