# HG changeset patch # User paulson # Date 1091024740 -7200 # Node ID 32402f5624d132973221aa14c40ee6eb1cb12ae3 # Parent 7912ace86f31d51e372721010d5f9c42c7a6daa7 abs notation diff -r 7912ace86f31 -r 32402f5624d1 src/HOL/Hyperreal/MacLaurin.thy --- a/src/HOL/Hyperreal/MacLaurin.thy Wed Jul 28 16:25:28 2004 +0200 +++ b/src/HOL/Hyperreal/MacLaurin.thy Wed Jul 28 16:25:40 2004 +0200 @@ -575,12 +575,12 @@ (* ------------------------------------------------------------------------- *) lemma sin_bound_lemma: - "[|x = y; abs u \ (v::real) |] ==> abs ((x + u) - y) \ v" + "[|x = y; abs u \ (v::real) |] ==> \(x + u) - y\ \ v" by auto lemma Maclaurin_sin_bound: "abs(sin x - sumr 0 n (%m. (if even m then 0 else ((- 1) ^ ((m - (Suc 0)) div 2)) / real (fact m)) * - x ^ m)) \ inverse(real (fact n)) * abs(x) ^ n" + x ^ m)) \ inverse(real (fact n)) * \x\ ^ n" proof - have "!! x (y::real). x \ 1 \ 0 \ y \ x * y \ 1 * y" by (rule_tac mult_right_mono,simp_all) diff -r 7912ace86f31 -r 32402f5624d1 src/HOL/Hyperreal/Transcendental.thy --- a/src/HOL/Hyperreal/Transcendental.thy Wed Jul 28 16:25:28 2004 +0200 +++ b/src/HOL/Hyperreal/Transcendental.thy Wed Jul 28 16:25:40 2004 +0200 @@ -393,16 +393,16 @@ lemma powser_insidea: "[| summable (%n. f(n) * (x ^ n)); \z\ < \x\ |] - ==> summable (%n. abs(f(n)) * (z ^ n))" + ==> summable (%n. \f(n)\ * (z ^ n))" apply (drule summable_LIMSEQ_zero) apply (drule convergentI) apply (simp add: Cauchy_convergent_iff [symmetric]) apply (drule Cauchy_Bseq) apply (simp add: Bseq_def, safe) -apply (rule_tac g = "%n. K * abs (z ^ n) * inverse (abs (x ^ n))" in summable_comparison_test) +apply (rule_tac g = "%n. K * \z ^ n\ * inverse (\x ^ n\)" in summable_comparison_test) apply (rule_tac x = 0 in exI, safe) -apply (subgoal_tac "0 < abs (x ^ n) ") -apply (rule_tac c="abs (x ^ n)" in mult_right_le_imp_le) +apply (subgoal_tac "0 < \x ^ n\ ") +apply (rule_tac c="\x ^ n\" in mult_right_le_imp_le) apply (auto simp add: mult_assoc power_abs) prefer 2 apply (drule_tac x = 0 in spec, force) @@ -412,7 +412,7 @@ apply (auto intro!: mult_right_mono simp add: mult_assoc [symmetric] power_abs summable_def power_0_left) apply (rule_tac x = "K * inverse (1 - (\z\ * inverse (\x\))) " in exI) apply (auto intro!: sums_mult simp add: mult_assoc) -apply (subgoal_tac "abs (z ^ n) * inverse (\x\ ^ n) = (\z\ * inverse (\x\)) ^ n") +apply (subgoal_tac "\z ^ n\ * inverse (\x\ ^ n) = (\z\ * inverse (\x\)) ^ n") apply (auto simp add: power_abs [symmetric]) apply (subgoal_tac "x \ 0") apply (subgoal_tac [3] "x \ 0") @@ -502,7 +502,7 @@ del: sumr_Suc realpow_Suc) done -lemma lemma_termdiff3: "[| h \ 0; \z\ \ K; abs (z + h) \ K |] +lemma lemma_termdiff3: "[| h \ 0; \z\ \ K; \z + h\ \ K |] ==> abs (((z + h) ^ n - z ^ n) * inverse h - real n * z ^ (n - Suc 0)) \ real n * real (n - Suc 0) * K ^ (n - 2) * \h\" apply (subst lemma_termdiff2, assumption) @@ -532,7 +532,7 @@ lemma lemma_termdiff4: "[| 0 < k; - (\h. 0 < \h\ & \h\ < k --> abs(f h) \ K * \h\) |] + (\h. 0 < \h\ & \h\ < k --> \f h\ \ K * \h\) |] ==> f -- 0 --> 0" apply (unfold LIM_def, auto) apply (subgoal_tac "0 \ K") @@ -562,7 +562,7 @@ (\n. abs(g(h) (n::nat)) \ (f(n) * \h\)) |] ==> (%h. suminf(g h)) -- 0 --> 0" apply (drule summable_sums) -apply (subgoal_tac "\h. 0 < \h\ & \h\ < k --> abs (suminf (g h)) \ suminf f * \h\") +apply (subgoal_tac "\h. 0 < \h\ & \h\ < k --> \suminf (g h)\ \ suminf f * \h\") apply (auto intro!: lemma_termdiff4 simp add: sums_summable [THEN suminf_mult, symmetric]) apply (subgoal_tac "summable (%n. f n * \h\) ") prefer 2 @@ -573,7 +573,7 @@ apply (subgoal_tac "summable (%n. abs (g (h::real) (n::nat))) ") apply (rule_tac [2] g = "%n. f n * \h\" in summable_comparison_test) apply (rule_tac [2] x = 0 in exI, auto) -apply (rule_tac j = "suminf (%n. abs (g h n))" in real_le_trans) +apply (rule_tac j = "suminf (%n. \g h n\)" in real_le_trans) apply (auto intro: summable_rabs summable_le simp add: sums_summable [THEN suminf_mult]) done @@ -591,7 +591,7 @@ apply (drule dense, safe) apply (frule real_less_sum_gt_zero) apply (drule_tac - f = "%n. abs (c n) * real n * real (n - Suc 0) * (r ^ (n - 2))" + f = "%n. \c n\ * real n * real (n - Suc 0) * (r ^ (n - 2))" and g = "%h n. c (n) * ((( ((x + h) ^ n) - (x ^ n)) * inverse h) - (real n * (x ^ (n - Suc 0))))" in lemma_termdiff5) @@ -609,7 +609,7 @@ apply (drule sums_summable) apply (simp_all add: diffs_def) apply (simp add: diffs_def mult_ac) -apply (subgoal_tac " (%n. real n * (real (Suc n) * (abs (c (Suc n)) * (r ^ (n - Suc 0))))) = (%n. diffs (%m. real (m - Suc 0) * abs (c m) * inverse r) n * (r ^ n))") +apply (subgoal_tac " (%n. real n * (real (Suc n) * (\c (Suc n)\ * (r ^ (n - Suc 0))))) = (%n. diffs (%m. real (m - Suc 0) * \c m\ * inverse r) n * (r ^ n))") apply auto prefer 2 apply (rule ext) @@ -899,7 +899,7 @@ lemma inv_exp_gt_zero [simp]: "0 < inverse(exp x)" by (auto intro: positive_imp_inverse_positive) -lemma abs_exp_cancel [simp]: "abs(exp x) = exp x" +lemma abs_exp_cancel [simp]: "\exp x\ = exp x" by (auto simp add: abs_eqI2) lemma exp_real_of_nat_mult: "exp(real n * x) = exp(x) ^ n" @@ -1179,7 +1179,7 @@ lemma real_gt_one_ge_zero_add_less: "[| 1 < x; 0 \ y |] ==> 1 < x + (y::real)" by arith -lemma abs_sin_le_one [simp]: "abs(sin x) \ 1" +lemma abs_sin_le_one [simp]: "\sin x\ \ 1" apply (auto simp add: linorder_not_less [symmetric]) apply (drule_tac n = "Suc 0" in power_gt1) apply (auto simp del: realpow_Suc) @@ -1197,7 +1197,7 @@ apply (simp add: abs_le_interval_iff del: abs_sin_le_one) done -lemma abs_cos_le_one [simp]: "abs(cos x) \ 1" +lemma abs_cos_le_one [simp]: "\cos x\ \ 1" apply (auto simp add: linorder_not_less [symmetric]) apply (drule_tac n = "Suc 0" in power_gt1) apply (auto simp del: realpow_Suc) @@ -2065,7 +2065,7 @@ lemma isCont_exp [simp]: "isCont exp x" by (rule DERIV_exp [THEN DERIV_isCont]) -lemma sin_zero_abs_cos_one: "sin x = 0 ==> abs(cos x) = 1" +lemma sin_zero_abs_cos_one: "sin x = 0 ==> \cos x\ = 1" by (auto simp add: sin_zero_iff even_mult_two_ex) lemma exp_eq_one_iff [simp]: "(exp x = 1) = (x = 0)" @@ -2550,7 +2550,7 @@ \z. \z - x\ \ d --> g(f(z)) = z; \z. \z - x\ \ d --> isCont f z |] ==> \e. 0 < e & - (\y. 0 < abs(y - f(x)) & abs(y - f(x)) < e --> f(g(y)) = y)" + (\y. 0 < \y - f(x)\ & \y - f(x)\ < e --> f(g(y)) = y)" apply (drule isCont_inj_range) prefer 2 apply (assumption, assumption, auto) apply (rule_tac x = e in exI, auto)