# HG changeset patch # User haftmann # Date 1395177106 -3600 # Node ID 3253aaf73a0161fc5ba7ebd8c9fe46e3c28c0521 # Parent 3250d70c8d0bf646452ac0fa8101d31cb26551ab consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly diff -r 3250d70c8d0b -r 3253aaf73a01 NEWS --- a/NEWS Tue Mar 18 21:02:33 2014 +0100 +++ b/NEWS Tue Mar 18 22:11:46 2014 +0100 @@ -98,8 +98,11 @@ *** HOL *** +* Consolidated theorem names containing INFI and SUPR: have INF +and SUP instead uniformly. INCOMPATIBILITY. + * More aggressive normalization of expressions involving INF and Inf -or SUP and Sup. INCOMPATIBILITY. +or SUP and Sup. INCOMPATIBILITY. * INF_image and SUP_image do not unfold composition. INCOMPATIBILITY. diff -r 3250d70c8d0b -r 3253aaf73a01 src/HOL/Complete_Lattices.thy --- a/src/HOL/Complete_Lattices.thy Tue Mar 18 21:02:33 2014 +0100 +++ b/src/HOL/Complete_Lattices.thy Tue Mar 18 22:11:46 2014 +0100 @@ -293,13 +293,13 @@ ultimately show ?thesis by (rule Sup_upper2) qed -lemma SUPR_eq: +lemma SUP_eq: assumes "\i. i \ A \ \j\B. f i \ g j" assumes "\j. j \ B \ \i\A. g j \ f i" shows "(\i\A. f i) = (\j\B. g j)" by (intro antisym SUP_least) (blast intro: SUP_upper2 dest: assms)+ -lemma INFI_eq: +lemma INF_eq: assumes "\i. i \ A \ \j\B. f i \ g j" assumes "\j. j \ B \ \i\A. g j \ f i" shows "(\i\A. f i) = (\j\B. g j)" diff -r 3250d70c8d0b -r 3253aaf73a01 src/HOL/Library/Extended_Real.thy --- a/src/HOL/Library/Extended_Real.thy Tue Mar 18 21:02:33 2014 +0100 +++ b/src/HOL/Library/Extended_Real.thy Tue Mar 18 22:11:46 2014 +0100 @@ -1421,16 +1421,16 @@ using INF_lower2[of _ A f u] INF_greatest[of A l f] by (cases "INFI A f") auto -lemma ereal_SUPR_uminus: +lemma ereal_SUP_uminus: fixes f :: "'a \ ereal" shows "(SUP i : R. -(f i)) = -(INF i : R. f i)" using ereal_Sup_uminus_image_eq[of "f`R"] by (simp add: image_image) -lemma ereal_INFI_uminus: +lemma ereal_INF_uminus: fixes f :: "'a \ ereal" shows "(INF i : R. - f i) = - (SUP i : R. f i)" - using ereal_SUPR_uminus[of _ "\x. - f x"] by simp + using ereal_SUP_uminus [of _ "\x. - f x"] by simp lemma ereal_image_uminus_shift: fixes X Y :: "ereal set" @@ -1539,7 +1539,7 @@ using real by (simp add: ereal_le_minus_iff) qed (insert assms, auto) -lemma SUPR_ereal_add: +lemma SUP_ereal_add: fixes f g :: "nat \ ereal" assumes "incseq f" and "incseq g" @@ -1575,18 +1575,18 @@ by (simp add: ac_simps) qed (auto intro!: add_mono SUP_upper) -lemma SUPR_ereal_add_pos: +lemma SUP_ereal_add_pos: fixes f g :: "nat \ ereal" assumes inc: "incseq f" "incseq g" and pos: "\i. 0 \ f i" "\i. 0 \ g i" shows "(SUP i. f i + g i) = SUPR UNIV f + SUPR UNIV g" -proof (intro SUPR_ereal_add inc) +proof (intro SUP_ereal_add inc) fix i show "f i \ -\" "g i \ -\" using pos[of i] by auto qed -lemma SUPR_ereal_setsum: +lemma SUP_ereal_setsum: fixes f g :: "'a \ nat \ ereal" assumes "\n. n \ A \ incseq (f n)" and pos: "\n i. n \ A \ 0 \ f n i" @@ -1594,13 +1594,13 @@ proof (cases "finite A") case True then show ?thesis using assms - by induct (auto simp: incseq_setsumI2 setsum_nonneg SUPR_ereal_add_pos) + by induct (auto simp: incseq_setsumI2 setsum_nonneg SUP_ereal_add_pos) next case False then show ?thesis by simp qed -lemma SUPR_ereal_cmult: +lemma SUP_ereal_cmult: fixes f :: "nat \ ereal" assumes "\i. 0 \ f i" and "0 \ c" @@ -1675,7 +1675,7 @@ qed qed -lemma Sup_countable_SUPR: +lemma Sup_countable_SUP: assumes "A \ {}" shows "\f::nat \ ereal. range f \ A \ Sup A = SUPR UNIV f" proof (cases "Sup A") @@ -1770,9 +1770,9 @@ using MInf by (auto intro!: exI[of _ "\x. -\"]) qed -lemma SUPR_countable_SUPR: +lemma SUP_countable_SUP: "A \ {} \ \f::nat \ ereal. range f \ g`A \ SUPR A g = SUPR UNIV f" - using Sup_countable_SUPR[of "g`A"] + using Sup_countable_SUP [of "g`A"] by auto lemma Sup_ereal_cadd: @@ -1807,7 +1807,7 @@ using Sup_ereal_cadd [of "uminus ` A" a] assms unfolding image_image minus_ereal_def by (simp add: ereal_SUP_uminus_eq) -lemma SUPR_ereal_cminus: +lemma SUP_ereal_cminus: fixes f :: "'i \ ereal" fixes A assumes "A \ {}" @@ -1834,7 +1834,7 @@ by (auto simp add: ereal_INF_uminus_eq ereal_SUP_uminus_eq) qed -lemma INFI_ereal_cminus: +lemma INF_ereal_cminus: fixes a :: ereal assumes "A \ {}" and "\a\ \ \" @@ -1848,7 +1848,7 @@ shows "a \ \ \ b \ \ \ - (- a + - b) = a + b" by (cases rule: ereal2_cases[of a b]) auto -lemma INFI_ereal_add: +lemma INF_ereal_add: fixes f :: "nat \ ereal" assumes "decseq f" "decseq g" and fin: "\i. f i \ \" "\i. g i \ \" @@ -1864,10 +1864,10 @@ then have "(INF i. f i + g i) = (INF i. - ((- f i) + (- g i)))" by simp also have "\ = INFI UNIV f + INFI UNIV g" - unfolding ereal_INFI_uminus + unfolding ereal_INF_uminus using assms INF_less - by (subst SUPR_ereal_add) - (auto simp: ereal_SUPR_uminus intro!: uminus_ereal_add_uminus_uminus) + by (subst SUP_ereal_add) + (auto simp: ereal_SUP_uminus intro!: uminus_ereal_add_uminus_uminus) finally show ?thesis . qed @@ -2430,7 +2430,7 @@ lemma ereal_Limsup_uminus: fixes f :: "'a \ ereal" shows "Limsup net (\x. - (f x)) = - Liminf net f" - unfolding Limsup_def Liminf_def ereal_SUPR_uminus ereal_INFI_uminus .. + unfolding Limsup_def Liminf_def ereal_SUP_uminus ereal_INF_uminus .. lemma liminf_bounded_iff: fixes x :: "nat \ ereal" diff -r 3250d70c8d0b -r 3253aaf73a01 src/HOL/Library/Liminf_Limsup.thy --- a/src/HOL/Library/Liminf_Limsup.thy Tue Mar 18 21:02:33 2014 +0100 +++ b/src/HOL/Library/Liminf_Limsup.thy Tue Mar 18 22:11:46 2014 +0100 @@ -20,12 +20,12 @@ unfolding INF_le_iff by (blast intro: less_imp_le less_trans le_less_trans dest: dense) -lemma SUPR_pair: +lemma SUP_pair: fixes f :: "_ \ _ \ _ :: complete_lattice" shows "(SUP i : A. SUP j : B. f i j) = (SUP p : A \ B. f (fst p) (snd p))" by (rule antisym) (auto intro!: SUP_least SUP_upper2) -lemma INFI_pair: +lemma INF_pair: fixes f :: "_ \ _ \ _ :: complete_lattice" shows "(INF i : A. INF j : B. f i j) = (INF p : A \ B. f (fst p) (snd p))" by (rule antisym) (auto intro!: INF_greatest INF_lower2) @@ -52,13 +52,13 @@ (\y. (\P. eventually P F \ y \ SUPR (Collect P) f) \ y \ x) \ Limsup F f = x" unfolding Limsup_def by (auto intro!: INF_eqI) -lemma liminf_SUPR_INFI: "liminf f = (SUP n. INF m:{n..}. f m)" +lemma liminf_SUP_INF: "liminf f = (SUP n. INF m:{n..}. f m)" unfolding Liminf_def eventually_sequentially - by (rule SUPR_eq) (auto simp: atLeast_def intro!: INF_mono) + by (rule SUP_eq) (auto simp: atLeast_def intro!: INF_mono) -lemma limsup_INFI_SUPR: "limsup f = (INF n. SUP m:{n..}. f m)" +lemma limsup_INF_SUP: "limsup f = (INF n. SUP m:{n..}. f m)" unfolding Limsup_def eventually_sequentially - by (rule INFI_eq) (auto simp: atLeast_def intro!: SUP_mono) + by (rule INF_eq) (auto simp: atLeast_def intro!: SUP_mono) lemma Limsup_const: assumes ntriv: "\ trivial_limit F" @@ -292,7 +292,7 @@ fix n m :: nat assume "n \ m" then show "\ma\{n..}. X ma \ (X \ r) m" using seq_suble[OF `subseq r`, of m] by (intro bexI[of _ "r m"]) auto qed - then show ?thesis by (auto intro!: SUP_mono simp: liminf_SUPR_INFI comp_def) + then show ?thesis by (auto intro!: SUP_mono simp: liminf_SUP_INF comp_def) qed lemma limsup_subseq_mono: @@ -305,7 +305,7 @@ fix n m :: nat assume "n \ m" then show "\ma\{n..}. (X \ r) m \ X ma" using seq_suble[OF `subseq r`, of m] by (intro bexI[of _ "r m"]) auto qed - then show ?thesis by (auto intro!: INF_mono simp: limsup_INFI_SUPR comp_def) + then show ?thesis by (auto intro!: INF_mono simp: limsup_INF_SUP comp_def) qed end diff -r 3250d70c8d0b -r 3253aaf73a01 src/HOL/Library/Product_Order.thy --- a/src/HOL/Library/Product_Order.thy Tue Mar 18 21:02:33 2014 +0100 +++ b/src/HOL/Library/Product_Order.thy Tue Mar 18 22:11:46 2014 +0100 @@ -218,26 +218,14 @@ text {* Alternative formulations for set infima and suprema over the product of two complete lattices: *} -lemma Inf_prod_alt_def: "Inf A = (Inf (fst ` A), Inf (snd ` A))" -by (auto simp: Inf_prod_def) - -lemma Sup_prod_alt_def: "Sup A = (Sup (fst ` A), Sup (snd ` A))" -by (auto simp: Sup_prod_def) - -lemma INFI_prod_alt_def: "INFI A f = (INFI A (fst o f), INFI A (snd o f))" +lemma INF_prod_alt_def: + "INFI A f = (INFI A (fst o f), INFI A (snd o f))" unfolding INF_def Inf_prod_def by simp -lemma SUPR_prod_alt_def: "SUPR A f = (SUPR A (fst o f), SUPR A (snd o f))" +lemma SUP_prod_alt_def: + "SUPR A f = (SUPR A (fst o f), SUPR A (snd o f))" unfolding SUP_def Sup_prod_def by simp -lemma INF_prod_alt_def: - "(INF x:A. f x) = (INF x:A. fst (f x), INF x:A. snd (f x))" - by (simp add: INFI_prod_alt_def comp_def) - -lemma SUP_prod_alt_def: - "(SUP x:A. f x) = (SUP x:A. fst (f x), SUP x:A. snd (f x))" - by (simp add: SUPR_prod_alt_def comp_def) - subsection {* Complete distributive lattices *} @@ -247,10 +235,10 @@ (complete_distrib_lattice, complete_distrib_lattice) complete_distrib_lattice proof case goal1 thus ?case - by (auto simp: sup_prod_def Inf_prod_def INF_prod_alt_def sup_Inf sup_INF) + by (auto simp: sup_prod_def Inf_prod_def INF_prod_alt_def sup_Inf sup_INF comp_def) next case goal2 thus ?case - by (auto simp: inf_prod_def Sup_prod_def SUP_prod_alt_def inf_Sup inf_SUP) + by (auto simp: inf_prod_def Sup_prod_def SUP_prod_alt_def inf_Sup inf_SUP comp_def) qed end diff -r 3250d70c8d0b -r 3253aaf73a01 src/HOL/Library/RBT_Set.thy --- a/src/HOL/Library/RBT_Set.thy Tue Mar 18 21:02:33 2014 +0100 +++ b/src/HOL/Library/RBT_Set.thy Tue Mar 18 22:11:46 2014 +0100 @@ -757,7 +757,7 @@ declare Inf'_def[symmetric, code_unfold] declare Inf_Set_fold[folded Inf'_def, code] -lemma INFI_Set_fold [code]: +lemma INF_Set_fold [code]: fixes f :: "_ \ 'a::complete_lattice" shows "INFI (Set t) f = fold_keys (inf \ f) t top" proof - @@ -798,7 +798,7 @@ declare Sup'_def[symmetric, code_unfold] declare Sup_Set_fold[folded Sup'_def, code] -lemma SUPR_Set_fold [code]: +lemma SUP_Set_fold [code]: fixes f :: "_ \ 'a::complete_lattice" shows "SUPR (Set t) f = fold_keys (sup \ f) t bot" proof - diff -r 3250d70c8d0b -r 3253aaf73a01 src/HOL/Lifting_Set.thy --- a/src/HOL/Lifting_Set.thy Tue Mar 18 21:02:33 2014 +0100 +++ b/src/HOL/Lifting_Set.thy Tue Mar 18 22:11:46 2014 +0100 @@ -149,14 +149,14 @@ rel_set rel_set" unfolding rel_fun_def rel_set_def by fast -lemma SUPR_parametric [transfer_rule]: +lemma SUP_parametric [transfer_rule]: "(rel_set R ===> (R ===> op =) ===> op =) SUPR (SUPR :: _ \ _ \ _::complete_lattice)" proof(rule rel_funI)+ fix A B f and g :: "'b \ 'c" assume AB: "rel_set R A B" and fg: "(R ===> op =) f g" show "SUPR A f = SUPR B g" - by(rule SUPR_eq)(auto 4 4 dest: rel_setD1[OF AB] rel_setD2[OF AB] rel_funD[OF fg] intro: rev_bexI) + by (rule SUP_eq) (auto 4 4 dest: rel_setD1 [OF AB] rel_setD2 [OF AB] rel_funD [OF fg] intro: rev_bexI) qed lemma bind_transfer [transfer_rule]: diff -r 3250d70c8d0b -r 3253aaf73a01 src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy --- a/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy Tue Mar 18 21:02:33 2014 +0100 +++ b/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy Tue Mar 18 22:11:46 2014 +0100 @@ -537,10 +537,10 @@ next case (real r) then show ?thesis - unfolding liminf_SUPR_INFI limsup_INFI_SUPR - apply (subst INFI_ereal_cminus) + unfolding liminf_SUP_INF limsup_INF_SUP + apply (subst INF_ereal_cminus) apply auto - apply (subst SUPR_ereal_cminus) + apply (subst SUP_ereal_cminus) apply auto done qed (insert `c \ -\`, simp) @@ -874,7 +874,7 @@ unfolding summable_def by auto -lemma suminf_ereal_eq_SUPR: +lemma suminf_ereal_eq_SUP: fixes f :: "nat \ ereal" assumes "\i. 0 \ f i" shows "(\x. f x) = (SUP n. \i ereal" assumes "\n. 0 \ f n" shows "(\n (\n. f n)" - unfolding suminf_ereal_eq_SUPR[OF assms] + unfolding suminf_ereal_eq_SUP [OF assms] by (auto intro: complete_lattice_class.SUP_upper) lemma suminf_0_le: @@ -956,9 +956,9 @@ assumes "\i. 0 \ f i" and "\i. 0 \ g i" shows "(\i. f i + g i) = suminf f + suminf g" - apply (subst (1 2 3) suminf_ereal_eq_SUPR) + apply (subst (1 2 3) suminf_ereal_eq_SUP) unfolding setsum_addf - apply (intro assms ereal_add_nonneg_nonneg SUPR_ereal_add_pos incseq_setsumI setsum_nonneg ballI)+ + apply (intro assms ereal_add_nonneg_nonneg SUP_ereal_add_pos incseq_setsumI setsum_nonneg ballI)+ done lemma suminf_cmult_ereal: @@ -967,8 +967,8 @@ and "0 \ a" shows "(\i. a * f i) = a * suminf f" by (auto simp: setsum_ereal_right_distrib[symmetric] assms - ereal_zero_le_0_iff setsum_nonneg suminf_ereal_eq_SUPR - intro!: SUPR_ereal_cmult ) + ereal_zero_le_0_iff setsum_nonneg suminf_ereal_eq_SUP + intro!: SUP_ereal_cmult) lemma suminf_PInfty: fixes f :: "nat \ ereal" @@ -1107,12 +1107,12 @@ fix n :: nat have "(\ii 'b::complete_lattice" shows "Liminf (at x within S) f = (SUP e:{0<..}. INF y:(S \ ball x e - {x}). f y)" unfolding Liminf_def eventually_at -proof (rule SUPR_eq, simp_all add: Ball_def Bex_def, safe) +proof (rule SUP_eq, simp_all add: Ball_def Bex_def, safe) fix P d assume "0 < d" and "\y. y \ S \ y \ x \ dist y x < d \ P y" then have "S \ ball x d - {x} \ {x. P x}" @@ -1181,7 +1181,7 @@ fixes f :: "'a::metric_space \ 'b::complete_lattice" shows "Limsup (at x within S) f = (INF e:{0<..}. SUP y:(S \ ball x e - {x}). f y)" unfolding Limsup_def eventually_at -proof (rule INFI_eq, simp_all add: Ball_def Bex_def, safe) +proof (rule INF_eq, simp_all add: Ball_def Bex_def, safe) fix P d assume "0 < d" and "\y. y \ S \ y \ x \ dist y x < d \ P y" then have "S \ ball x d - {x} \ {x. P x}" diff -r 3250d70c8d0b -r 3253aaf73a01 src/HOL/Predicate.thy --- a/src/HOL/Predicate.thy Tue Mar 18 21:02:33 2014 +0100 +++ b/src/HOL/Predicate.thy Tue Mar 18 22:11:46 2014 +0100 @@ -83,11 +83,11 @@ end -lemma eval_INFI [simp]: +lemma eval_INF [simp]: "eval (INFI A f) = INFI A (eval \ f)" using eval_Inf [of "f ` A"] by simp -lemma eval_SUPR [simp]: +lemma eval_SUP [simp]: "eval (SUPR A f) = SUPR A (eval \ f)" using eval_Sup [of "f ` A"] by simp diff -r 3250d70c8d0b -r 3253aaf73a01 src/HOL/Probability/Borel_Space.thy --- a/src/HOL/Probability/Borel_Space.thy Tue Mar 18 21:02:33 2014 +0100 +++ b/src/HOL/Probability/Borel_Space.thy Tue Mar 18 22:11:46 2014 +0100 @@ -1111,7 +1111,7 @@ assumes "\i. f i \ borel_measurable M" shows borel_measurable_liminf: "(\x. liminf (\i. f i x)) \ borel_measurable M" and borel_measurable_limsup: "(\x. limsup (\i. f i x)) \ borel_measurable M" - unfolding liminf_SUPR_INFI limsup_INFI_SUPR using assms by auto + unfolding liminf_SUP_INF limsup_INF_SUP using assms by auto lemma sets_Collect_eventually_sequentially[measurable]: "(\i. {x\space M. P x i} \ sets M) \ {x\space M. eventually (P x) sequentially} \ sets M" diff -r 3250d70c8d0b -r 3253aaf73a01 src/HOL/Probability/Caratheodory.thy --- a/src/HOL/Probability/Caratheodory.thy Tue Mar 18 21:02:33 2014 +0100 +++ b/src/HOL/Probability/Caratheodory.thy Tue Mar 18 22:11:46 2014 +0100 @@ -40,9 +40,9 @@ by (auto intro!: setsum_mono3 simp: pos) } ultimately show ?thesis unfolding g_def using pos - by (auto intro!: SUPR_eq simp: setsum_cartesian_product reindex SUP_upper2 - setsum_nonneg suminf_ereal_eq_SUPR SUPR_pair - SUPR_ereal_setsum[symmetric] incseq_setsumI setsum_nonneg) + by (auto intro!: SUP_eq simp: setsum_cartesian_product reindex SUP_upper2 + setsum_nonneg suminf_ereal_eq_SUP SUP_pair + SUP_ereal_setsum[symmetric] incseq_setsumI setsum_nonneg) qed subsection {* Measure Spaces *} diff -r 3250d70c8d0b -r 3253aaf73a01 src/HOL/Probability/Lebesgue_Integration.thy --- a/src/HOL/Probability/Lebesgue_Integration.thy Tue Mar 18 21:02:33 2014 +0100 +++ b/src/HOL/Probability/Lebesgue_Integration.thy Tue Mar 18 22:11:46 2014 +0100 @@ -946,18 +946,18 @@ have "integral\<^sup>S M u = (SUP i. integral\<^sup>S M (?uB i))" unfolding simple_integral_indicator[OF B `simple_function M u`] - proof (subst SUPR_ereal_setsum, safe) + proof (subst SUP_ereal_setsum, safe) fix x n assume "x \ space M" with u_range show "incseq (\i. u x * (emeasure M) (?B' (u x) i))" "\i. 0 \ u x * (emeasure M) (?B' (u x) i)" using B_mono B_u by (auto intro!: emeasure_mono ereal_mult_left_mono incseq_SucI simp: ereal_zero_le_0_iff) next show "integral\<^sup>S M u = (\i\u ` space M. SUP n. i * (emeasure M) (?B' i n))" using measure_conv u_range B_u unfolding simple_integral_def - by (auto intro!: setsum_cong SUPR_ereal_cmult[symmetric]) + by (auto intro!: setsum_cong SUP_ereal_cmult [symmetric]) qed moreover have "a * (SUP i. integral\<^sup>S M (?uB i)) \ ?S" - apply (subst SUPR_ereal_cmult[symmetric]) + apply (subst SUP_ereal_cmult [symmetric]) proof (safe intro!: SUP_mono bexI) fix i have "a * integral\<^sup>S M (?uB i) = (\\<^sup>Sx. a * ?uB i x \M)" @@ -1120,8 +1120,8 @@ by auto } then have "(SUP i. a * u i x + v i x) = a * (SUP i. u i x) + (SUP i. v i x)" using `0 \ a` u(3) v(3) u(6)[of _ x] v(6)[of _ x] - by (subst SUPR_ereal_cmult[symmetric, OF u(6) `0 \ a`]) - (auto intro!: SUPR_ereal_add + by (subst SUP_ereal_cmult [symmetric, OF u(6) `0 \ a`]) + (auto intro!: SUP_ereal_add simp: incseq_Suc_iff le_fun_def add_mono ereal_mult_left_mono ereal_add_nonneg_nonneg) } then show "AE x in M. (SUP i. l i x) = (SUP i. ?L' i x)" unfolding l(5) using `0 \ a` u(5) v(5) l(5) f(2) g(2) @@ -1132,8 +1132,8 @@ finally have "(\\<^sup>+ x. max 0 (a * f x + g x) \M) = a * (\\<^sup>+x. max 0 (f x) \M) + (\\<^sup>+x. max 0 (g x) \M)" unfolding l(5)[symmetric] u(5)[symmetric] v(5)[symmetric] unfolding l(1)[symmetric] u(1)[symmetric] v(1)[symmetric] - apply (subst SUPR_ereal_cmult[symmetric, OF pos(1) `0 \ a`]) - apply (subst SUPR_ereal_add[symmetric, OF inc not_MInf]) . + apply (subst SUP_ereal_cmult [symmetric, OF pos(1) `0 \ a`]) + apply (subst SUP_ereal_add [symmetric, OF inc not_MInf]) . then show ?thesis by (simp add: positive_integral_max_0) qed @@ -1277,14 +1277,14 @@ have all_pos: "AE x in M. \i. 0 \ f i x" using assms by (auto simp: AE_all_countable) have "(\i. integral\<^sup>P M (f i)) = (SUP n. \iP M (f i))" - using positive_integral_positive by (rule suminf_ereal_eq_SUPR) + using positive_integral_positive by (rule suminf_ereal_eq_SUP) also have "\ = (SUP n. \\<^sup>+x. (\iM)" unfolding positive_integral_setsum[OF f] .. also have "\ = \\<^sup>+x. (SUP n. \iM" using f all_pos by (intro positive_integral_monotone_convergence_SUP_AE[symmetric]) (elim AE_mp, auto simp: setsum_nonneg simp del: setsum_lessThan_Suc intro!: AE_I2 setsum_mono3) also have "\ = \\<^sup>+x. (\i. f i x) \M" using all_pos - by (intro positive_integral_cong_AE) (auto simp: suminf_ereal_eq_SUPR) + by (intro positive_integral_cong_AE) (auto simp: suminf_ereal_eq_SUP) finally show ?thesis by simp qed @@ -1297,11 +1297,11 @@ have pos: "AE x in M. \i. 0 \ u i x" using u by (auto simp: AE_all_countable) have "(\\<^sup>+ x. liminf (\n. u n x) \M) = (SUP n. \\<^sup>+ x. (INF i:{n..}. u i x) \M)" - unfolding liminf_SUPR_INFI using pos u + unfolding liminf_SUP_INF using pos u by (intro positive_integral_monotone_convergence_SUP_AE) (elim AE_mp, auto intro!: AE_I2 intro: INF_greatest INF_superset_mono) also have "\ \ liminf (\n. integral\<^sup>P M (u n))" - unfolding liminf_SUPR_INFI + unfolding liminf_SUP_INF by (auto intro!: SUP_mono exI INF_greatest positive_integral_mono INF_lower) finally show ?thesis . qed @@ -2749,7 +2749,7 @@ next case (seq U) from f(2) have eq: "AE x in M. f x * (SUP i. U i x) = (SUP i. f x * U i x)" - by eventually_elim (simp add: SUPR_ereal_cmult seq) + by eventually_elim (simp add: SUP_ereal_cmult seq) from seq f show ?case apply (simp add: positive_integral_monotone_convergence_SUP) apply (subst positive_integral_cong_AE[OF eq]) diff -r 3250d70c8d0b -r 3253aaf73a01 src/HOL/Probability/Measure_Space.thy --- a/src/HOL/Probability/Measure_Space.thy Tue Mar 18 21:02:33 2014 +0100 +++ b/src/HOL/Probability/Measure_Space.thy Tue Mar 18 22:11:46 2014 +0100 @@ -55,7 +55,7 @@ from this[of "Suc i"] show "f i \ y" by auto qed (insert assms, simp) ultimately show ?thesis using assms - by (subst suminf_ereal_eq_SUPR) (auto simp: indicator_def) + by (subst suminf_ereal_eq_SUP) (auto simp: indicator_def) qed lemma suminf_indicator: @@ -375,7 +375,7 @@ by auto ultimately have "(INF n. f (A n - (\i. A i)) + f (\i. A i)) = 0 + f (\i. A i)" using A(4) f_fin f_Int_fin - by (subst INFI_ereal_add) (auto simp: decseq_f) + by (subst INF_ereal_add) (auto simp: decseq_f) moreover { fix n have "f (A n - (\i. A i)) + f (\i. A i) = f ((A n - (\i. A i)) \ (\i. A i))" @@ -543,10 +543,10 @@ have A0: "0 \ emeasure M (A 0)" using A by auto have "emeasure M (A 0) - (INF n. emeasure M (A n)) = emeasure M (A 0) + (SUP n. - emeasure M (A n))" - by (simp add: ereal_SUPR_uminus minus_ereal_def) + by (simp add: ereal_SUP_uminus minus_ereal_def) also have "\ = (SUP n. emeasure M (A 0) - emeasure M (A n))" unfolding minus_ereal_def using A0 assms - by (subst SUPR_ereal_add) (auto simp add: decseq_emeasure) + by (subst SUP_ereal_add) (auto simp add: decseq_emeasure) also have "\ = (SUP n. emeasure M (A 0 - A n))" using A finite `decseq A`[unfolded decseq_def] by (subst emeasure_Diff) auto also have "\ = emeasure M (\i. A 0 - A i)" diff -r 3250d70c8d0b -r 3253aaf73a01 src/HOL/Probability/Radon_Nikodym.thy --- a/src/HOL/Probability/Radon_Nikodym.thy Tue Mar 18 21:02:33 2014 +0100 +++ b/src/HOL/Probability/Radon_Nikodym.thy Tue Mar 18 22:11:46 2014 +0100 @@ -354,7 +354,7 @@ from this[THEN bspec, OF sets.top] show "integral\<^sup>P M g \ N (space M)" by (simp cong: positive_integral_cong) qed - from SUPR_countable_SUPR[OF `G \ {}`, of "integral\<^sup>P M"] guess ys .. note ys = this + from SUP_countable_SUP [OF `G \ {}`, of "integral\<^sup>P M"] guess ys .. note ys = this then have "\n. \g. g\G \ integral\<^sup>P M g = ys n" proof safe fix n assume "range ys \ integral\<^sup>P M ` G" @@ -540,7 +540,7 @@ by (auto intro!: SUP_least emeasure_mono) then have "?a \ \" using finite_emeasure_space by auto - from SUPR_countable_SUPR[OF Q_not_empty, of "emeasure M"] + from SUP_countable_SUP [OF Q_not_empty, of "emeasure M"] obtain Q'' where "range Q'' \ emeasure M ` ?Q" and a: "?a = (SUP i::nat. Q'' i)" by auto then have "\i. \Q'. Q'' i = emeasure M Q' \ Q' \ ?Q" by auto diff -r 3250d70c8d0b -r 3253aaf73a01 src/HOL/Probability/Regularity.thy --- a/src/HOL/Probability/Regularity.thy Tue Mar 18 21:02:33 2014 +0100 +++ b/src/HOL/Probability/Regularity.thy Tue Mar 18 22:11:46 2014 +0100 @@ -312,7 +312,7 @@ case 2 have "M (space M - B) = M (space M) - emeasure M B" by (auto simp: emeasure_compl) also have "\ = (INF K:{K. K \ B \ compact K}. M (space M) - M K)" - unfolding inner by (subst INFI_ereal_cminus) force+ + unfolding inner by (subst INF_ereal_cminus) force+ also have "\ = (INF U:{U. U \ B \ compact U}. M (space M - U))" by (rule INF_cong) (auto simp add: emeasure_compl sb compact_imp_closed) also have "\ \ (INF U:{U. U \ B \ closed U}. M (space M - U))" @@ -331,7 +331,7 @@ case 1 have "M (space M - B) = M (space M) - emeasure M B" by (auto simp: emeasure_compl) also have "\ = (SUP U: {U. B \ U \ open U}. M (space M) - M U)" - unfolding outer by (subst SUPR_ereal_cminus) auto + unfolding outer by (subst SUP_ereal_cminus) auto also have "\ = (SUP U:{U. B \ U \ open U}. M (space M - U))" by (rule SUP_cong) (auto simp add: emeasure_compl sb compact_imp_closed) also have "\ = (SUP K:{K. K \ space M - B \ closed K}. emeasure M K)"