# HG changeset patch # User wenzelm # Date 1201460670 -3600 # Node ID 3267d0694d932dc2e1c3b7639bcc8db4d73694db # Parent 89a03048f312b7e41b12fb3f0cca5b0ffcda326c tuned; diff -r 89a03048f312 -r 3267d0694d93 src/FOL/ex/Nat.thy --- a/src/FOL/ex/Nat.thy Sun Jan 27 18:32:32 2008 +0100 +++ b/src/FOL/ex/Nat.thy Sun Jan 27 20:04:30 2008 +0100 @@ -16,7 +16,7 @@ consts 0 :: nat ("0") Suc :: "nat => nat" - rec :: "[nat, 'a, [nat,'a]=>'a] => 'a" + rec :: "[nat, 'a, [nat, 'a] => 'a] => 'a" add :: "[nat, nat] => nat" (infixl "+" 60) axioms diff -r 89a03048f312 -r 3267d0694d93 src/FOL/ex/Natural_Numbers.thy --- a/src/FOL/ex/Natural_Numbers.thy Sun Jan 27 18:32:32 2008 +0100 +++ b/src/FOL/ex/Natural_Numbers.thy Sun Jan 27 20:04:30 2008 +0100 @@ -33,13 +33,13 @@ show "Suc(0) \ 0" proof assume "Suc(0) = 0" - thus False by (rule Suc_neq_0) + then show False by (rule Suc_neq_0) qed fix n assume hyp: "Suc(n) \ n" show "Suc(Suc(n)) \ Suc(n)" proof assume "Suc(Suc(n)) = Suc(n)" - hence "Suc(n) = n" by (rule Suc_inject) + then have "Suc(n) = n" by (rule Suc_inject) with hyp show False by contradiction qed qed @@ -67,7 +67,7 @@ lemma "(!!n. f(Suc(n)) = Suc(f(n))) ==> f(i + j) = i + f(j)" proof - assume "!!n. f(Suc(n)) = Suc(f(n))" - thus ?thesis by (induct i) simp_all + then show ?thesis by (induct i) simp_all qed end