# HG changeset patch # User hoelzl # Date 1383641100 -3600 # Node ID 326fd7103cb4d169d38e2c4c6ab09bf040eae4dc # Parent 89991ef58448e225d4949e8aba9040f1d4e92801 generalize bdd_above/below_uminus to ordered_ab_group_add diff -r 89991ef58448 -r 326fd7103cb4 src/HOL/Conditionally_Complete_Lattices.thy --- a/src/HOL/Conditionally_Complete_Lattices.thy Tue Nov 05 09:45:00 2013 +0100 +++ b/src/HOL/Conditionally_Complete_Lattices.thy Tue Nov 05 09:45:00 2013 +0100 @@ -96,6 +96,16 @@ lemma (in order_bot) bdd_above_bot[simp, intro!]: "bdd_below A" by (rule bdd_belowI[of _ bot]) simp +lemma bdd_above_uminus[simp]: + fixes X :: "'a::ordered_ab_group_add set" + shows "bdd_above (uminus ` X) \ bdd_below X" + by (auto simp: bdd_above_def bdd_below_def intro: le_imp_neg_le) (metis le_imp_neg_le minus_minus) + +lemma bdd_below_uminus[simp]: + fixes X :: "'a::ordered_ab_group_add set" + shows"bdd_below (uminus ` X) \ bdd_above X" + by (auto simp: bdd_above_def bdd_below_def intro: le_imp_neg_le) (metis le_imp_neg_le minus_minus) + context lattice begin diff -r 89991ef58448 -r 326fd7103cb4 src/HOL/Real.thy --- a/src/HOL/Real.thy Tue Nov 05 09:45:00 2013 +0100 +++ b/src/HOL/Real.thy Tue Nov 05 09:45:00 2013 +0100 @@ -919,13 +919,6 @@ using 1 2 3 by (rule_tac x="Real B" in exI, simp) qed -(* TODO: generalize to ordered group *) -lemma bdd_above_uminus[simp]: "bdd_above (uminus ` X) \ bdd_below (X::real set)" - by (auto simp: bdd_above_def bdd_below_def intro: le_imp_neg_le) (metis le_imp_neg_le minus_minus) - -lemma bdd_below_uminus[simp]: "bdd_below (uminus ` X) \ bdd_above (X::real set)" - by (auto simp: bdd_above_def bdd_below_def intro: le_imp_neg_le) (metis le_imp_neg_le minus_minus) - instantiation real :: linear_continuum begin