# HG changeset patch # User ballarin # Date 1225188187 -3600 # Node ID 32b6a8f12c1cf37617688dde8e1f390d0f6ccbb6 # Parent b1c4366e1212b4ae46fb92b2fdba496a67690d8f Removed 'includes meta_term_syntax' and 'includes meta_conjunction_syntax'. diff -r b1c4366e1212 -r 32b6a8f12c1c src/FOL/FOL.thy --- a/src/FOL/FOL.thy Mon Oct 27 18:14:34 2008 +0100 +++ b/src/FOL/FOL.thy Tue Oct 28 11:03:07 2008 +0100 @@ -347,7 +347,7 @@ unfolding atomize_eq induct_equal_def . lemma induct_conj_eq: - includes meta_conjunction_syntax + fixes meta_conjunction :: "prop => prop => prop" (infixr "&&" 2) shows "(A && B) == Trueprop(induct_conj(A, B))" unfolding atomize_conj induct_conj_def . diff -r b1c4366e1212 -r 32b6a8f12c1c src/FOL/IFOL.thy --- a/src/FOL/IFOL.thy Mon Oct 27 18:14:34 2008 +0100 +++ b/src/FOL/IFOL.thy Tue Oct 28 11:03:07 2008 +0100 @@ -699,7 +699,7 @@ qed lemma atomize_conj [atomize]: - includes meta_conjunction_syntax + fixes meta_conjunction :: "prop => prop => prop" (infixr "&&" 2) shows "(A && B) == Trueprop (A & B)" proof assume conj: "A && B" diff -r b1c4366e1212 -r 32b6a8f12c1c src/HOL/Code_Setup.thy --- a/src/HOL/Code_Setup.thy Mon Oct 27 18:14:34 2008 +0100 +++ b/src/HOL/Code_Setup.thy Tue Oct 28 11:03:07 2008 +0100 @@ -72,7 +72,7 @@ using assms by simp_all lemma If_case_cert: - includes meta_conjunction_syntax + fixes meta_conjunction :: "prop => prop => prop" (infixr "&&" 2) assumes "CASE \ (\b. If b f g)" shows "(CASE True \ f) && (CASE False \ g)" using assms by simp_all diff -r b1c4366e1212 -r 32b6a8f12c1c src/HOL/Groebner_Basis.thy --- a/src/HOL/Groebner_Basis.thy Mon Oct 27 18:14:34 2008 +0100 +++ b/src/HOL/Groebner_Basis.thy Tue Oct 28 11:03:07 2008 +0100 @@ -64,7 +64,7 @@ subsubsection {* Declaring the abstract theory *} lemma semiring_ops: - includes meta_term_syntax + fixes meta_term :: "'a => prop" ("TERM _") shows "TERM (add x y)" and "TERM (mul x y)" and "TERM (pwr x n)" and "TERM r0" and "TERM r1" by rule+ @@ -227,7 +227,7 @@ begin lemma ring_ops: - includes meta_term_syntax + fixes meta_term :: "'a => prop" ("TERM _") shows "TERM (sub x y)" and "TERM (neg x)" . lemmas ring_rules = neg_mul sub_add diff -r b1c4366e1212 -r 32b6a8f12c1c src/HOL/HOL.thy --- a/src/HOL/HOL.thy Mon Oct 27 18:14:34 2008 +0100 +++ b/src/HOL/HOL.thy Tue Oct 28 11:03:07 2008 +0100 @@ -846,7 +846,7 @@ qed lemma atomize_conj [atomize]: - includes meta_conjunction_syntax + fixes meta_conjunction :: "prop => prop => prop" (infixr "&&" 2) shows "(A && B) == Trueprop (A & B)" proof assume conj: "A && B" @@ -1504,7 +1504,7 @@ by (unfold atomize_eq induct_equal_def) lemma induct_conj_eq: - includes meta_conjunction_syntax + fixes meta_conjunction :: "prop => prop => prop" (infixr "&&" 2) shows "(A && B) == Trueprop (induct_conj A B)" by (unfold atomize_conj induct_conj_def) diff -r b1c4366e1212 -r 32b6a8f12c1c src/HOL/Library/Dense_Linear_Order.thy --- a/src/HOL/Library/Dense_Linear_Order.thy Mon Oct 27 18:14:34 2008 +0100 +++ b/src/HOL/Library/Dense_Linear_Order.thy Tue Oct 28 11:03:07 2008 +0100 @@ -268,7 +268,7 @@ lemma axiom: "dense_linear_order (op \) (op <)" by (rule dense_linear_order_axioms) lemma atoms: - includes meta_term_syntax + fixes meta_term :: "'a => prop" ("TERM _") shows "TERM (less :: 'a \ _)" and "TERM (less_eq :: 'a \ _)" and "TERM (op = :: 'a \ _)" . @@ -505,7 +505,7 @@ lemma ferrack_axiom: "constr_dense_linear_order less_eq less between" by (rule constr_dense_linear_order_axioms) lemma atoms: - includes meta_term_syntax + fixes meta_term :: "'a => prop" ("TERM _") shows "TERM (less :: 'a \ _)" and "TERM (less_eq :: 'a \ _)" and "TERM (op = :: 'a \ _)" . diff -r b1c4366e1212 -r 32b6a8f12c1c src/Pure/Pure.thy --- a/src/Pure/Pure.thy Mon Oct 27 18:14:34 2008 +0100 +++ b/src/Pure/Pure.thy Tue Oct 28 11:03:07 2008 +0100 @@ -38,7 +38,7 @@ fixes meta_conjunction :: "prop => prop => prop" (infixr "&&" 2) lemma all_conjunction: - includes meta_conjunction_syntax + fixes meta_conjunction :: "prop => prop => prop" (infixr "&&" 2) shows "(!!x. PROP A x && PROP B x) == ((!!x. PROP A x) && (!!x. PROP B x))" proof assume conj: "!!x. PROP A x && PROP B x" @@ -59,7 +59,7 @@ qed lemma imp_conjunction: - includes meta_conjunction_syntax + fixes meta_conjunction :: "prop => prop => prop" (infixr "&&" 2) shows "(PROP A ==> PROP B && PROP C) == (PROP A ==> PROP B) && (PROP A ==> PROP C)" proof assume conj: "PROP A ==> PROP B && PROP C" @@ -80,7 +80,7 @@ qed lemma conjunction_imp: - includes meta_conjunction_syntax + fixes meta_conjunction :: "prop => prop => prop" (infixr "&&" 2) shows "(PROP A && PROP B ==> PROP C) == (PROP A ==> PROP B ==> PROP C)" proof assume r: "PROP A && PROP B ==> PROP C"