# HG changeset patch # User haftmann # Date 1387820271 -3600 # Node ID 3324a007863693dae5e879f314170f27068d8f1f # Parent a435932a9f12c2a8c4a54541d388092f6bf96265 prefer "Bits" as theory name for abstract bit operations, similar to "Orderings", "Lattices", "Groups" etc. diff -r a435932a9f12 -r 3324a0078636 src/HOL/Word/Bit_Bit.thy --- a/src/HOL/Word/Bit_Bit.thy Mon Dec 23 16:29:43 2013 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,73 +0,0 @@ -(* Title: HOL/Word/Bit_Bit.thy - Author: Author: Brian Huffman, PSU and Gerwin Klein, NICTA -*) - -header {* Bit operations in $\cal Z_2$ *} - -theory Bit_Bit -imports Bit_Operations "~~/src/HOL/Library/Bit" -begin - -instantiation bit :: bit -begin - -primrec bitNOT_bit where - "NOT 0 = (1::bit)" - | "NOT 1 = (0::bit)" - -primrec bitAND_bit where - "0 AND y = (0::bit)" - | "1 AND y = (y::bit)" - -primrec bitOR_bit where - "0 OR y = (y::bit)" - | "1 OR y = (1::bit)" - -primrec bitXOR_bit where - "0 XOR y = (y::bit)" - | "1 XOR y = (NOT y :: bit)" - -instance .. - -end - -lemmas bit_simps = - bitNOT_bit.simps bitAND_bit.simps bitOR_bit.simps bitXOR_bit.simps - -lemma bit_extra_simps [simp]: - "x AND 0 = (0::bit)" - "x AND 1 = (x::bit)" - "x OR 1 = (1::bit)" - "x OR 0 = (x::bit)" - "x XOR 1 = NOT (x::bit)" - "x XOR 0 = (x::bit)" - by (cases x, auto)+ - -lemma bit_ops_comm: - "(x::bit) AND y = y AND x" - "(x::bit) OR y = y OR x" - "(x::bit) XOR y = y XOR x" - by (cases y, auto)+ - -lemma bit_ops_same [simp]: - "(x::bit) AND x = x" - "(x::bit) OR x = x" - "(x::bit) XOR x = 0" - by (cases x, auto)+ - -lemma bit_not_not [simp]: "NOT (NOT (x::bit)) = x" - by (cases x) auto - -lemma bit_or_def: "(b::bit) OR c = NOT (NOT b AND NOT c)" - by (induct b, simp_all) - -lemma bit_xor_def: "(b::bit) XOR c = (b AND NOT c) OR (NOT b AND c)" - by (induct b, simp_all) - -lemma bit_NOT_eq_1_iff [simp]: "NOT (b::bit) = 1 \ b = 0" - by (induct b, simp_all) - -lemma bit_AND_eq_1_iff [simp]: "(a::bit) AND b = 1 \ a = 1 \ b = 1" - by (induct a, simp_all) - -end diff -r a435932a9f12 -r 3324a0078636 src/HOL/Word/Bit_Comparison.thy --- a/src/HOL/Word/Bit_Comparison.thy Mon Dec 23 16:29:43 2013 +0100 +++ b/src/HOL/Word/Bit_Comparison.thy Mon Dec 23 18:37:51 2013 +0100 @@ -6,7 +6,7 @@ *) theory Bit_Comparison -imports Type_Length Bit_Operations Bit_Int +imports Bits_Int begin lemma AND_lower [simp]: diff -r a435932a9f12 -r 3324a0078636 src/HOL/Word/Bit_Int.thy --- a/src/HOL/Word/Bit_Int.thy Mon Dec 23 16:29:43 2013 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,681 +0,0 @@ -(* - Author: Jeremy Dawson and Gerwin Klein, NICTA - - Definitions and basic theorems for bit-wise logical operations - for integers expressed using Pls, Min, BIT, - and converting them to and from lists of bools. -*) - -header {* Bitwise Operations on Binary Integers *} - -theory Bit_Int -imports Bit_Representation Bit_Operations -begin - -subsection {* Logical operations *} - -text "bit-wise logical operations on the int type" - -instantiation int :: bit -begin - -definition int_not_def: - "bitNOT = (\x::int. - x - 1)" - -function bitAND_int where - "bitAND_int x y = - (if x = 0 then 0 else if x = -1 then y else - (bin_rest x AND bin_rest y) BIT (bin_last x \ bin_last y))" - by pat_completeness simp - -termination - by (relation "measure (nat o abs o fst)", simp_all add: bin_rest_def) - -declare bitAND_int.simps [simp del] - -definition int_or_def: - "bitOR = (\x y::int. NOT (NOT x AND NOT y))" - -definition int_xor_def: - "bitXOR = (\x y::int. (x AND NOT y) OR (NOT x AND y))" - -instance .. - -end - -subsubsection {* Basic simplification rules *} - -lemma int_not_BIT [simp]: - "NOT (w BIT b) = (NOT w) BIT (\ b)" - unfolding int_not_def Bit_def by (cases b, simp_all) - -lemma int_not_simps [simp]: - "NOT (0::int) = -1" - "NOT (1::int) = -2" - "NOT (- 1::int) = 0" - "NOT (numeral w::int) = - numeral (w + Num.One)" - "NOT (- numeral (Num.Bit0 w)::int) = numeral (Num.BitM w)" - "NOT (- numeral (Num.Bit1 w)::int) = numeral (Num.Bit0 w)" - unfolding int_not_def by simp_all - -lemma int_not_not [simp]: "NOT (NOT (x::int)) = x" - unfolding int_not_def by simp - -lemma int_and_0 [simp]: "(0::int) AND x = 0" - by (simp add: bitAND_int.simps) - -lemma int_and_m1 [simp]: "(-1::int) AND x = x" - by (simp add: bitAND_int.simps) - -lemma int_and_Bits [simp]: - "(x BIT b) AND (y BIT c) = (x AND y) BIT (b \ c)" - by (subst bitAND_int.simps, simp add: Bit_eq_0_iff Bit_eq_m1_iff) - -lemma int_or_zero [simp]: "(0::int) OR x = x" - unfolding int_or_def by simp - -lemma int_or_minus1 [simp]: "(-1::int) OR x = -1" - unfolding int_or_def by simp - -lemma int_or_Bits [simp]: - "(x BIT b) OR (y BIT c) = (x OR y) BIT (b \ c)" - unfolding int_or_def by simp - -lemma int_xor_zero [simp]: "(0::int) XOR x = x" - unfolding int_xor_def by simp - -lemma int_xor_Bits [simp]: - "(x BIT b) XOR (y BIT c) = (x XOR y) BIT ((b \ c) \ \ (b \ c))" - unfolding int_xor_def by auto - -subsubsection {* Binary destructors *} - -lemma bin_rest_NOT [simp]: "bin_rest (NOT x) = NOT (bin_rest x)" - by (cases x rule: bin_exhaust, simp) - -lemma bin_last_NOT [simp]: "bin_last (NOT x) \ \ bin_last x" - by (cases x rule: bin_exhaust, simp) - -lemma bin_rest_AND [simp]: "bin_rest (x AND y) = bin_rest x AND bin_rest y" - by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) - -lemma bin_last_AND [simp]: "bin_last (x AND y) \ bin_last x \ bin_last y" - by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) - -lemma bin_rest_OR [simp]: "bin_rest (x OR y) = bin_rest x OR bin_rest y" - by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) - -lemma bin_last_OR [simp]: "bin_last (x OR y) \ bin_last x \ bin_last y" - by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) - -lemma bin_rest_XOR [simp]: "bin_rest (x XOR y) = bin_rest x XOR bin_rest y" - by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) - -lemma bin_last_XOR [simp]: "bin_last (x XOR y) \ (bin_last x \ bin_last y) \ \ (bin_last x \ bin_last y)" - by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) - -lemma bin_nth_ops: - "!!x y. bin_nth (x AND y) n = (bin_nth x n & bin_nth y n)" - "!!x y. bin_nth (x OR y) n = (bin_nth x n | bin_nth y n)" - "!!x y. bin_nth (x XOR y) n = (bin_nth x n ~= bin_nth y n)" - "!!x. bin_nth (NOT x) n = (~ bin_nth x n)" - by (induct n) auto - -subsubsection {* Derived properties *} - -lemma int_xor_minus1 [simp]: "(-1::int) XOR x = NOT x" - by (auto simp add: bin_eq_iff bin_nth_ops) - -lemma int_xor_extra_simps [simp]: - "w XOR (0::int) = w" - "w XOR (-1::int) = NOT w" - by (auto simp add: bin_eq_iff bin_nth_ops) - -lemma int_or_extra_simps [simp]: - "w OR (0::int) = w" - "w OR (-1::int) = -1" - by (auto simp add: bin_eq_iff bin_nth_ops) - -lemma int_and_extra_simps [simp]: - "w AND (0::int) = 0" - "w AND (-1::int) = w" - by (auto simp add: bin_eq_iff bin_nth_ops) - -(* commutativity of the above *) -lemma bin_ops_comm: - shows - int_and_comm: "!!y::int. x AND y = y AND x" and - int_or_comm: "!!y::int. x OR y = y OR x" and - int_xor_comm: "!!y::int. x XOR y = y XOR x" - by (auto simp add: bin_eq_iff bin_nth_ops) - -lemma bin_ops_same [simp]: - "(x::int) AND x = x" - "(x::int) OR x = x" - "(x::int) XOR x = 0" - by (auto simp add: bin_eq_iff bin_nth_ops) - -lemmas bin_log_esimps = - int_and_extra_simps int_or_extra_simps int_xor_extra_simps - int_and_0 int_and_m1 int_or_zero int_or_minus1 int_xor_zero int_xor_minus1 - -(* basic properties of logical (bit-wise) operations *) - -lemma bbw_ao_absorb: - "!!y::int. x AND (y OR x) = x & x OR (y AND x) = x" - by (auto simp add: bin_eq_iff bin_nth_ops) - -lemma bbw_ao_absorbs_other: - "x AND (x OR y) = x \ (y AND x) OR x = (x::int)" - "(y OR x) AND x = x \ x OR (x AND y) = (x::int)" - "(x OR y) AND x = x \ (x AND y) OR x = (x::int)" - by (auto simp add: bin_eq_iff bin_nth_ops) - -lemmas bbw_ao_absorbs [simp] = bbw_ao_absorb bbw_ao_absorbs_other - -lemma int_xor_not: - "!!y::int. (NOT x) XOR y = NOT (x XOR y) & - x XOR (NOT y) = NOT (x XOR y)" - by (auto simp add: bin_eq_iff bin_nth_ops) - -lemma int_and_assoc: - "(x AND y) AND (z::int) = x AND (y AND z)" - by (auto simp add: bin_eq_iff bin_nth_ops) - -lemma int_or_assoc: - "(x OR y) OR (z::int) = x OR (y OR z)" - by (auto simp add: bin_eq_iff bin_nth_ops) - -lemma int_xor_assoc: - "(x XOR y) XOR (z::int) = x XOR (y XOR z)" - by (auto simp add: bin_eq_iff bin_nth_ops) - -lemmas bbw_assocs = int_and_assoc int_or_assoc int_xor_assoc - -(* BH: Why are these declared as simp rules??? *) -lemma bbw_lcs [simp]: - "(y::int) AND (x AND z) = x AND (y AND z)" - "(y::int) OR (x OR z) = x OR (y OR z)" - "(y::int) XOR (x XOR z) = x XOR (y XOR z)" - by (auto simp add: bin_eq_iff bin_nth_ops) - -lemma bbw_not_dist: - "!!y::int. NOT (x OR y) = (NOT x) AND (NOT y)" - "!!y::int. NOT (x AND y) = (NOT x) OR (NOT y)" - by (auto simp add: bin_eq_iff bin_nth_ops) - -lemma bbw_oa_dist: - "!!y z::int. (x AND y) OR z = - (x OR z) AND (y OR z)" - by (auto simp add: bin_eq_iff bin_nth_ops) - -lemma bbw_ao_dist: - "!!y z::int. (x OR y) AND z = - (x AND z) OR (y AND z)" - by (auto simp add: bin_eq_iff bin_nth_ops) - -(* -Why were these declared simp??? -declare bin_ops_comm [simp] bbw_assocs [simp] -*) - -subsubsection {* Simplification with numerals *} - -text {* Cases for @{text "0"} and @{text "-1"} are already covered by - other simp rules. *} - -lemma bin_rl_eqI: "\bin_rest x = bin_rest y; bin_last x = bin_last y\ \ x = y" - by (metis (mono_tags) BIT_eq_iff bin_ex_rl bin_last_BIT bin_rest_BIT) - -lemma bin_rest_neg_numeral_BitM [simp]: - "bin_rest (- numeral (Num.BitM w)) = - numeral w" - by (simp only: BIT_bin_simps [symmetric] bin_rest_BIT) - -lemma bin_last_neg_numeral_BitM [simp]: - "bin_last (- numeral (Num.BitM w))" - by (simp only: BIT_bin_simps [symmetric] bin_last_BIT) - -text {* FIXME: The rule sets below are very large (24 rules for each - operator). Is there a simpler way to do this? *} - -lemma int_and_numerals [simp]: - "numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = (numeral x AND numeral y) BIT False" - "numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = (numeral x AND numeral y) BIT False" - "numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = (numeral x AND numeral y) BIT False" - "numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = (numeral x AND numeral y) BIT True" - "numeral (Num.Bit0 x) AND - numeral (Num.Bit0 y) = (numeral x AND - numeral y) BIT False" - "numeral (Num.Bit0 x) AND - numeral (Num.Bit1 y) = (numeral x AND - numeral (y + Num.One)) BIT False" - "numeral (Num.Bit1 x) AND - numeral (Num.Bit0 y) = (numeral x AND - numeral y) BIT False" - "numeral (Num.Bit1 x) AND - numeral (Num.Bit1 y) = (numeral x AND - numeral (y + Num.One)) BIT True" - "- numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = (- numeral x AND numeral y) BIT False" - "- numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = (- numeral x AND numeral y) BIT False" - "- numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = (- numeral (x + Num.One) AND numeral y) BIT False" - "- numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = (- numeral (x + Num.One) AND numeral y) BIT True" - "- numeral (Num.Bit0 x) AND - numeral (Num.Bit0 y) = (- numeral x AND - numeral y) BIT False" - "- numeral (Num.Bit0 x) AND - numeral (Num.Bit1 y) = (- numeral x AND - numeral (y + Num.One)) BIT False" - "- numeral (Num.Bit1 x) AND - numeral (Num.Bit0 y) = (- numeral (x + Num.One) AND - numeral y) BIT False" - "- numeral (Num.Bit1 x) AND - numeral (Num.Bit1 y) = (- numeral (x + Num.One) AND - numeral (y + Num.One)) BIT True" - "(1::int) AND numeral (Num.Bit0 y) = 0" - "(1::int) AND numeral (Num.Bit1 y) = 1" - "(1::int) AND - numeral (Num.Bit0 y) = 0" - "(1::int) AND - numeral (Num.Bit1 y) = 1" - "numeral (Num.Bit0 x) AND (1::int) = 0" - "numeral (Num.Bit1 x) AND (1::int) = 1" - "- numeral (Num.Bit0 x) AND (1::int) = 0" - "- numeral (Num.Bit1 x) AND (1::int) = 1" - by (rule bin_rl_eqI, simp, simp)+ - -lemma int_or_numerals [simp]: - "numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = (numeral x OR numeral y) BIT False" - "numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = (numeral x OR numeral y) BIT True" - "numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = (numeral x OR numeral y) BIT True" - "numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = (numeral x OR numeral y) BIT True" - "numeral (Num.Bit0 x) OR - numeral (Num.Bit0 y) = (numeral x OR - numeral y) BIT False" - "numeral (Num.Bit0 x) OR - numeral (Num.Bit1 y) = (numeral x OR - numeral (y + Num.One)) BIT True" - "numeral (Num.Bit1 x) OR - numeral (Num.Bit0 y) = (numeral x OR - numeral y) BIT True" - "numeral (Num.Bit1 x) OR - numeral (Num.Bit1 y) = (numeral x OR - numeral (y + Num.One)) BIT True" - "- numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = (- numeral x OR numeral y) BIT False" - "- numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = (- numeral x OR numeral y) BIT True" - "- numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = (- numeral (x + Num.One) OR numeral y) BIT True" - "- numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = (- numeral (x + Num.One) OR numeral y) BIT True" - "- numeral (Num.Bit0 x) OR - numeral (Num.Bit0 y) = (- numeral x OR - numeral y) BIT False" - "- numeral (Num.Bit0 x) OR - numeral (Num.Bit1 y) = (- numeral x OR - numeral (y + Num.One)) BIT True" - "- numeral (Num.Bit1 x) OR - numeral (Num.Bit0 y) = (- numeral (x + Num.One) OR - numeral y) BIT True" - "- numeral (Num.Bit1 x) OR - numeral (Num.Bit1 y) = (- numeral (x + Num.One) OR - numeral (y + Num.One)) BIT True" - "(1::int) OR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)" - "(1::int) OR numeral (Num.Bit1 y) = numeral (Num.Bit1 y)" - "(1::int) OR - numeral (Num.Bit0 y) = - numeral (Num.BitM y)" - "(1::int) OR - numeral (Num.Bit1 y) = - numeral (Num.Bit1 y)" - "numeral (Num.Bit0 x) OR (1::int) = numeral (Num.Bit1 x)" - "numeral (Num.Bit1 x) OR (1::int) = numeral (Num.Bit1 x)" - "- numeral (Num.Bit0 x) OR (1::int) = - numeral (Num.BitM x)" - "- numeral (Num.Bit1 x) OR (1::int) = - numeral (Num.Bit1 x)" - by (rule bin_rl_eqI, simp, simp)+ - -lemma int_xor_numerals [simp]: - "numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = (numeral x XOR numeral y) BIT False" - "numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = (numeral x XOR numeral y) BIT True" - "numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = (numeral x XOR numeral y) BIT True" - "numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = (numeral x XOR numeral y) BIT False" - "numeral (Num.Bit0 x) XOR - numeral (Num.Bit0 y) = (numeral x XOR - numeral y) BIT False" - "numeral (Num.Bit0 x) XOR - numeral (Num.Bit1 y) = (numeral x XOR - numeral (y + Num.One)) BIT True" - "numeral (Num.Bit1 x) XOR - numeral (Num.Bit0 y) = (numeral x XOR - numeral y) BIT True" - "numeral (Num.Bit1 x) XOR - numeral (Num.Bit1 y) = (numeral x XOR - numeral (y + Num.One)) BIT False" - "- numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = (- numeral x XOR numeral y) BIT False" - "- numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = (- numeral x XOR numeral y) BIT True" - "- numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = (- numeral (x + Num.One) XOR numeral y) BIT True" - "- numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = (- numeral (x + Num.One) XOR numeral y) BIT False" - "- numeral (Num.Bit0 x) XOR - numeral (Num.Bit0 y) = (- numeral x XOR - numeral y) BIT False" - "- numeral (Num.Bit0 x) XOR - numeral (Num.Bit1 y) = (- numeral x XOR - numeral (y + Num.One)) BIT True" - "- numeral (Num.Bit1 x) XOR - numeral (Num.Bit0 y) = (- numeral (x + Num.One) XOR - numeral y) BIT True" - "- numeral (Num.Bit1 x) XOR - numeral (Num.Bit1 y) = (- numeral (x + Num.One) XOR - numeral (y + Num.One)) BIT False" - "(1::int) XOR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)" - "(1::int) XOR numeral (Num.Bit1 y) = numeral (Num.Bit0 y)" - "(1::int) XOR - numeral (Num.Bit0 y) = - numeral (Num.BitM y)" - "(1::int) XOR - numeral (Num.Bit1 y) = - numeral (Num.Bit0 (y + Num.One))" - "numeral (Num.Bit0 x) XOR (1::int) = numeral (Num.Bit1 x)" - "numeral (Num.Bit1 x) XOR (1::int) = numeral (Num.Bit0 x)" - "- numeral (Num.Bit0 x) XOR (1::int) = - numeral (Num.BitM x)" - "- numeral (Num.Bit1 x) XOR (1::int) = - numeral (Num.Bit0 (x + Num.One))" - by (rule bin_rl_eqI, simp, simp)+ - -subsubsection {* Interactions with arithmetic *} - -lemma plus_and_or [rule_format]: - "ALL y::int. (x AND y) + (x OR y) = x + y" - apply (induct x rule: bin_induct) - apply clarsimp - apply clarsimp - apply clarsimp - apply (case_tac y rule: bin_exhaust) - apply clarsimp - apply (unfold Bit_def) - apply clarsimp - apply (erule_tac x = "x" in allE) - apply simp - done - -lemma le_int_or: - "bin_sign (y::int) = 0 ==> x <= x OR y" - apply (induct y arbitrary: x rule: bin_induct) - apply clarsimp - apply clarsimp - apply (case_tac x rule: bin_exhaust) - apply (case_tac b) - apply (case_tac [!] bit) - apply (auto simp: le_Bits) - done - -lemmas int_and_le = - xtrans(3) [OF bbw_ao_absorbs (2) [THEN conjunct2, symmetric] le_int_or] - -(* interaction between bit-wise and arithmetic *) -(* good example of bin_induction *) -lemma bin_add_not: "x + NOT x = (-1::int)" - apply (induct x rule: bin_induct) - apply clarsimp - apply clarsimp - apply (case_tac bit, auto) - done - -subsubsection {* Truncating results of bit-wise operations *} - -lemma bin_trunc_ao: - "!!x y. (bintrunc n x) AND (bintrunc n y) = bintrunc n (x AND y)" - "!!x y. (bintrunc n x) OR (bintrunc n y) = bintrunc n (x OR y)" - by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr) - -lemma bin_trunc_xor: - "!!x y. bintrunc n (bintrunc n x XOR bintrunc n y) = - bintrunc n (x XOR y)" - by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr) - -lemma bin_trunc_not: - "!!x. bintrunc n (NOT (bintrunc n x)) = bintrunc n (NOT x)" - by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr) - -(* want theorems of the form of bin_trunc_xor *) -lemma bintr_bintr_i: - "x = bintrunc n y ==> bintrunc n x = bintrunc n y" - by auto - -lemmas bin_trunc_and = bin_trunc_ao(1) [THEN bintr_bintr_i] -lemmas bin_trunc_or = bin_trunc_ao(2) [THEN bintr_bintr_i] - -subsection {* Setting and clearing bits *} - -primrec - bin_sc :: "nat => bool => int => int" -where - Z: "bin_sc 0 b w = bin_rest w BIT b" - | Suc: "bin_sc (Suc n) b w = bin_sc n b (bin_rest w) BIT bin_last w" - -(** nth bit, set/clear **) - -lemma bin_nth_sc [simp]: - "bin_nth (bin_sc n b w) n \ b" - by (induct n arbitrary: w) auto - -lemma bin_sc_sc_same [simp]: - "bin_sc n c (bin_sc n b w) = bin_sc n c w" - by (induct n arbitrary: w) auto - -lemma bin_sc_sc_diff: - "m ~= n ==> - bin_sc m c (bin_sc n b w) = bin_sc n b (bin_sc m c w)" - apply (induct n arbitrary: w m) - apply (case_tac [!] m) - apply auto - done - -lemma bin_nth_sc_gen: - "bin_nth (bin_sc n b w) m = (if m = n then b else bin_nth w m)" - by (induct n arbitrary: w m) (case_tac [!] m, auto) - -lemma bin_sc_nth [simp]: - "(bin_sc n (bin_nth w n) w) = w" - by (induct n arbitrary: w) auto - -lemma bin_sign_sc [simp]: - "bin_sign (bin_sc n b w) = bin_sign w" - by (induct n arbitrary: w) auto - -lemma bin_sc_bintr [simp]: - "bintrunc m (bin_sc n x (bintrunc m (w))) = bintrunc m (bin_sc n x w)" - apply (induct n arbitrary: w m) - apply (case_tac [!] w rule: bin_exhaust) - apply (case_tac [!] m, auto) - done - -lemma bin_clr_le: - "bin_sc n False w <= w" - apply (induct n arbitrary: w) - apply (case_tac [!] w rule: bin_exhaust) - apply (auto simp: le_Bits) - done - -lemma bin_set_ge: - "bin_sc n True w >= w" - apply (induct n arbitrary: w) - apply (case_tac [!] w rule: bin_exhaust) - apply (auto simp: le_Bits) - done - -lemma bintr_bin_clr_le: - "bintrunc n (bin_sc m False w) <= bintrunc n w" - apply (induct n arbitrary: w m) - apply simp - apply (case_tac w rule: bin_exhaust) - apply (case_tac m) - apply (auto simp: le_Bits) - done - -lemma bintr_bin_set_ge: - "bintrunc n (bin_sc m True w) >= bintrunc n w" - apply (induct n arbitrary: w m) - apply simp - apply (case_tac w rule: bin_exhaust) - apply (case_tac m) - apply (auto simp: le_Bits) - done - -lemma bin_sc_FP [simp]: "bin_sc n False 0 = 0" - by (induct n) auto - -lemma bin_sc_TM [simp]: "bin_sc n True -1 = -1" - by (induct n) auto - -lemmas bin_sc_simps = bin_sc.Z bin_sc.Suc bin_sc_TM bin_sc_FP - -lemma bin_sc_minus: - "0 < n ==> bin_sc (Suc (n - 1)) b w = bin_sc n b w" - by auto - -lemmas bin_sc_Suc_minus = - trans [OF bin_sc_minus [symmetric] bin_sc.Suc] - -lemma bin_sc_numeral [simp]: - "bin_sc (numeral k) b w = - bin_sc (pred_numeral k) b (bin_rest w) BIT bin_last w" - by (simp add: numeral_eq_Suc) - - -subsection {* Splitting and concatenation *} - -definition bin_rcat :: "nat \ int list \ int" -where - "bin_rcat n = foldl (\u v. bin_cat u n v) 0" - -fun bin_rsplit_aux :: "nat \ nat \ int \ int list \ int list" -where - "bin_rsplit_aux n m c bs = - (if m = 0 | n = 0 then bs else - let (a, b) = bin_split n c - in bin_rsplit_aux n (m - n) a (b # bs))" - -definition bin_rsplit :: "nat \ nat \ int \ int list" -where - "bin_rsplit n w = bin_rsplit_aux n (fst w) (snd w) []" - -fun bin_rsplitl_aux :: "nat \ nat \ int \ int list \ int list" -where - "bin_rsplitl_aux n m c bs = - (if m = 0 | n = 0 then bs else - let (a, b) = bin_split (min m n) c - in bin_rsplitl_aux n (m - n) a (b # bs))" - -definition bin_rsplitl :: "nat \ nat \ int \ int list" -where - "bin_rsplitl n w = bin_rsplitl_aux n (fst w) (snd w) []" - -declare bin_rsplit_aux.simps [simp del] -declare bin_rsplitl_aux.simps [simp del] - -lemma bin_sign_cat: - "bin_sign (bin_cat x n y) = bin_sign x" - by (induct n arbitrary: y) auto - -lemma bin_cat_Suc_Bit: - "bin_cat w (Suc n) (v BIT b) = bin_cat w n v BIT b" - by auto - -lemma bin_nth_cat: - "bin_nth (bin_cat x k y) n = - (if n < k then bin_nth y n else bin_nth x (n - k))" - apply (induct k arbitrary: n y) - apply clarsimp - apply (case_tac n, auto) - done - -lemma bin_nth_split: - "bin_split n c = (a, b) ==> - (ALL k. bin_nth a k = bin_nth c (n + k)) & - (ALL k. bin_nth b k = (k < n & bin_nth c k))" - apply (induct n arbitrary: b c) - apply clarsimp - apply (clarsimp simp: Let_def split: prod.split_asm) - apply (case_tac k) - apply auto - done - -lemma bin_cat_assoc: - "bin_cat (bin_cat x m y) n z = bin_cat x (m + n) (bin_cat y n z)" - by (induct n arbitrary: z) auto - -lemma bin_cat_assoc_sym: - "bin_cat x m (bin_cat y n z) = bin_cat (bin_cat x (m - n) y) (min m n) z" - apply (induct n arbitrary: z m, clarsimp) - apply (case_tac m, auto) - done - -lemma bin_cat_zero [simp]: "bin_cat 0 n w = bintrunc n w" - by (induct n arbitrary: w) auto - -lemma bintr_cat1: - "bintrunc (k + n) (bin_cat a n b) = bin_cat (bintrunc k a) n b" - by (induct n arbitrary: b) auto - -lemma bintr_cat: "bintrunc m (bin_cat a n b) = - bin_cat (bintrunc (m - n) a) n (bintrunc (min m n) b)" - by (rule bin_eqI) (auto simp: bin_nth_cat nth_bintr) - -lemma bintr_cat_same [simp]: - "bintrunc n (bin_cat a n b) = bintrunc n b" - by (auto simp add : bintr_cat) - -lemma cat_bintr [simp]: - "bin_cat a n (bintrunc n b) = bin_cat a n b" - by (induct n arbitrary: b) auto - -lemma split_bintrunc: - "bin_split n c = (a, b) ==> b = bintrunc n c" - by (induct n arbitrary: b c) (auto simp: Let_def split: prod.split_asm) - -lemma bin_cat_split: - "bin_split n w = (u, v) ==> w = bin_cat u n v" - by (induct n arbitrary: v w) (auto simp: Let_def split: prod.split_asm) - -lemma bin_split_cat: - "bin_split n (bin_cat v n w) = (v, bintrunc n w)" - by (induct n arbitrary: w) auto - -lemma bin_split_zero [simp]: "bin_split n 0 = (0, 0)" - by (induct n) auto - -lemma bin_split_minus1 [simp]: - "bin_split n -1 = (-1, bintrunc n -1)" - by (induct n) auto - -lemma bin_split_trunc: - "bin_split (min m n) c = (a, b) ==> - bin_split n (bintrunc m c) = (bintrunc (m - n) a, b)" - apply (induct n arbitrary: m b c, clarsimp) - apply (simp add: bin_rest_trunc Let_def split: prod.split_asm) - apply (case_tac m) - apply (auto simp: Let_def split: prod.split_asm) - done - -lemma bin_split_trunc1: - "bin_split n c = (a, b) ==> - bin_split n (bintrunc m c) = (bintrunc (m - n) a, bintrunc m b)" - apply (induct n arbitrary: m b c, clarsimp) - apply (simp add: bin_rest_trunc Let_def split: prod.split_asm) - apply (case_tac m) - apply (auto simp: Let_def split: prod.split_asm) - done - -lemma bin_cat_num: - "bin_cat a n b = a * 2 ^ n + bintrunc n b" - apply (induct n arbitrary: b, clarsimp) - apply (simp add: Bit_def) - done - -lemma bin_split_num: - "bin_split n b = (b div 2 ^ n, b mod 2 ^ n)" - apply (induct n arbitrary: b, simp) - apply (simp add: bin_rest_def zdiv_zmult2_eq) - apply (case_tac b rule: bin_exhaust) - apply simp - apply (simp add: Bit_def mod_mult_mult1 p1mod22k) - done - -subsection {* Miscellaneous lemmas *} - -lemma nth_2p_bin: - "bin_nth (2 ^ n) m = (m = n)" - apply (induct n arbitrary: m) - apply clarsimp - apply safe - apply (case_tac m) - apply (auto simp: Bit_B0_2t [symmetric]) - done - -(* for use when simplifying with bin_nth_Bit *) - -lemma ex_eq_or: - "(EX m. n = Suc m & (m = k | P m)) = (n = Suc k | (EX m. n = Suc m & P m))" - by auto - -lemma power_BIT: "2 ^ (Suc n) - 1 = (2 ^ n - 1) BIT True" - unfolding Bit_B1 - by (induct n) simp_all - -lemma mod_BIT: - "bin BIT bit mod 2 ^ Suc n = (bin mod 2 ^ n) BIT bit" -proof - - have "bin mod 2 ^ n < 2 ^ n" by simp - then have "bin mod 2 ^ n \ 2 ^ n - 1" by simp - then have "2 * (bin mod 2 ^ n) \ 2 * (2 ^ n - 1)" - by (rule mult_left_mono) simp - then have "2 * (bin mod 2 ^ n) + 1 < 2 * 2 ^ n" by simp - then show ?thesis - by (auto simp add: Bit_def mod_mult_mult1 mod_add_left_eq [of "2 * bin"] - mod_pos_pos_trivial) -qed - -lemma AND_mod: - fixes x :: int - shows "x AND 2 ^ n - 1 = x mod 2 ^ n" -proof (induct x arbitrary: n rule: bin_induct) - case 1 - then show ?case - by simp -next - case 2 - then show ?case - by (simp, simp add: m1mod2k) -next - case (3 bin bit) - show ?case - proof (cases n) - case 0 - then show ?thesis by simp - next - case (Suc m) - with 3 show ?thesis - by (simp only: power_BIT mod_BIT int_and_Bits) simp - qed -qed - -end - diff -r a435932a9f12 -r 3324a0078636 src/HOL/Word/Bit_Operations.thy --- a/src/HOL/Word/Bit_Operations.thy Mon Dec 23 16:29:43 2013 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,39 +0,0 @@ -(* Title: HOL/Word/Bit_Operations.thy - Author: Author: Brian Huffman, PSU and Gerwin Klein, NICTA -*) - -header {* Syntactic classes for bitwise operations *} - -theory Bit_Operations -imports Main -begin - -class bit = - fixes bitNOT :: "'a \ 'a" ("NOT _" [70] 71) - and bitAND :: "'a \ 'a \ 'a" (infixr "AND" 64) - and bitOR :: "'a \ 'a \ 'a" (infixr "OR" 59) - and bitXOR :: "'a \ 'a \ 'a" (infixr "XOR" 59) - -text {* - We want the bitwise operations to bind slightly weaker - than @{text "+"} and @{text "-"}, but @{text "~~"} to - bind slightly stronger than @{text "*"}. -*} - -text {* - Testing and shifting operations. -*} - -class bits = bit + - fixes test_bit :: "'a \ nat \ bool" (infixl "!!" 100) - and lsb :: "'a \ bool" - and set_bit :: "'a \ nat \ bool \ 'a" - and set_bits :: "(nat \ bool) \ 'a" (binder "BITS " 10) - and shiftl :: "'a \ nat \ 'a" (infixl "<<" 55) - and shiftr :: "'a \ nat \ 'a" (infixl ">>" 55) - -class bitss = bits + - fixes msb :: "'a \ bool" - -end - diff -r a435932a9f12 -r 3324a0078636 src/HOL/Word/Bits.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Word/Bits.thy Mon Dec 23 18:37:51 2013 +0100 @@ -0,0 +1,39 @@ +(* Title: HOL/Word/Bit_Operations.thy + Author: Author: Brian Huffman, PSU and Gerwin Klein, NICTA +*) + +header {* Syntactic classes for bitwise operations *} + +theory Bits +imports Main +begin + +class bit = + fixes bitNOT :: "'a \ 'a" ("NOT _" [70] 71) + and bitAND :: "'a \ 'a \ 'a" (infixr "AND" 64) + and bitOR :: "'a \ 'a \ 'a" (infixr "OR" 59) + and bitXOR :: "'a \ 'a \ 'a" (infixr "XOR" 59) + +text {* + We want the bitwise operations to bind slightly weaker + than @{text "+"} and @{text "-"}, but @{text "~~"} to + bind slightly stronger than @{text "*"}. +*} + +text {* + Testing and shifting operations. +*} + +class bits = bit + + fixes test_bit :: "'a \ nat \ bool" (infixl "!!" 100) + and lsb :: "'a \ bool" + and set_bit :: "'a \ nat \ bool \ 'a" + and set_bits :: "(nat \ bool) \ 'a" (binder "BITS " 10) + and shiftl :: "'a \ nat \ 'a" (infixl "<<" 55) + and shiftr :: "'a \ nat \ 'a" (infixl ">>" 55) + +class bitss = bits + + fixes msb :: "'a \ bool" + +end + diff -r a435932a9f12 -r 3324a0078636 src/HOL/Word/Bits_Bit.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Word/Bits_Bit.thy Mon Dec 23 18:37:51 2013 +0100 @@ -0,0 +1,73 @@ +(* Title: HOL/Word/Bit_Bit.thy + Author: Author: Brian Huffman, PSU and Gerwin Klein, NICTA +*) + +header {* Bit operations in $\cal Z_2$ *} + +theory Bits_Bit +imports Bits "~~/src/HOL/Library/Bit" +begin + +instantiation bit :: bit +begin + +primrec bitNOT_bit where + "NOT 0 = (1::bit)" + | "NOT 1 = (0::bit)" + +primrec bitAND_bit where + "0 AND y = (0::bit)" + | "1 AND y = (y::bit)" + +primrec bitOR_bit where + "0 OR y = (y::bit)" + | "1 OR y = (1::bit)" + +primrec bitXOR_bit where + "0 XOR y = (y::bit)" + | "1 XOR y = (NOT y :: bit)" + +instance .. + +end + +lemmas bit_simps = + bitNOT_bit.simps bitAND_bit.simps bitOR_bit.simps bitXOR_bit.simps + +lemma bit_extra_simps [simp]: + "x AND 0 = (0::bit)" + "x AND 1 = (x::bit)" + "x OR 1 = (1::bit)" + "x OR 0 = (x::bit)" + "x XOR 1 = NOT (x::bit)" + "x XOR 0 = (x::bit)" + by (cases x, auto)+ + +lemma bit_ops_comm: + "(x::bit) AND y = y AND x" + "(x::bit) OR y = y OR x" + "(x::bit) XOR y = y XOR x" + by (cases y, auto)+ + +lemma bit_ops_same [simp]: + "(x::bit) AND x = x" + "(x::bit) OR x = x" + "(x::bit) XOR x = 0" + by (cases x, auto)+ + +lemma bit_not_not [simp]: "NOT (NOT (x::bit)) = x" + by (cases x) auto + +lemma bit_or_def: "(b::bit) OR c = NOT (NOT b AND NOT c)" + by (induct b, simp_all) + +lemma bit_xor_def: "(b::bit) XOR c = (b AND NOT c) OR (NOT b AND c)" + by (induct b, simp_all) + +lemma bit_NOT_eq_1_iff [simp]: "NOT (b::bit) = 1 \ b = 0" + by (induct b, simp_all) + +lemma bit_AND_eq_1_iff [simp]: "(a::bit) AND b = 1 \ a = 1 \ b = 1" + by (induct a, simp_all) + +end diff -r a435932a9f12 -r 3324a0078636 src/HOL/Word/Bits_Int.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Word/Bits_Int.thy Mon Dec 23 18:37:51 2013 +0100 @@ -0,0 +1,681 @@ +(* + Author: Jeremy Dawson and Gerwin Klein, NICTA + + Definitions and basic theorems for bit-wise logical operations + for integers expressed using Pls, Min, BIT, + and converting them to and from lists of bools. +*) + +header {* Bitwise Operations on Binary Integers *} + +theory Bits_Int +imports Bits Bit_Representation +begin + +subsection {* Logical operations *} + +text "bit-wise logical operations on the int type" + +instantiation int :: bit +begin + +definition int_not_def: + "bitNOT = (\x::int. - x - 1)" + +function bitAND_int where + "bitAND_int x y = + (if x = 0 then 0 else if x = -1 then y else + (bin_rest x AND bin_rest y) BIT (bin_last x \ bin_last y))" + by pat_completeness simp + +termination + by (relation "measure (nat o abs o fst)", simp_all add: bin_rest_def) + +declare bitAND_int.simps [simp del] + +definition int_or_def: + "bitOR = (\x y::int. NOT (NOT x AND NOT y))" + +definition int_xor_def: + "bitXOR = (\x y::int. (x AND NOT y) OR (NOT x AND y))" + +instance .. + +end + +subsubsection {* Basic simplification rules *} + +lemma int_not_BIT [simp]: + "NOT (w BIT b) = (NOT w) BIT (\ b)" + unfolding int_not_def Bit_def by (cases b, simp_all) + +lemma int_not_simps [simp]: + "NOT (0::int) = -1" + "NOT (1::int) = -2" + "NOT (- 1::int) = 0" + "NOT (numeral w::int) = - numeral (w + Num.One)" + "NOT (- numeral (Num.Bit0 w)::int) = numeral (Num.BitM w)" + "NOT (- numeral (Num.Bit1 w)::int) = numeral (Num.Bit0 w)" + unfolding int_not_def by simp_all + +lemma int_not_not [simp]: "NOT (NOT (x::int)) = x" + unfolding int_not_def by simp + +lemma int_and_0 [simp]: "(0::int) AND x = 0" + by (simp add: bitAND_int.simps) + +lemma int_and_m1 [simp]: "(-1::int) AND x = x" + by (simp add: bitAND_int.simps) + +lemma int_and_Bits [simp]: + "(x BIT b) AND (y BIT c) = (x AND y) BIT (b \ c)" + by (subst bitAND_int.simps, simp add: Bit_eq_0_iff Bit_eq_m1_iff) + +lemma int_or_zero [simp]: "(0::int) OR x = x" + unfolding int_or_def by simp + +lemma int_or_minus1 [simp]: "(-1::int) OR x = -1" + unfolding int_or_def by simp + +lemma int_or_Bits [simp]: + "(x BIT b) OR (y BIT c) = (x OR y) BIT (b \ c)" + unfolding int_or_def by simp + +lemma int_xor_zero [simp]: "(0::int) XOR x = x" + unfolding int_xor_def by simp + +lemma int_xor_Bits [simp]: + "(x BIT b) XOR (y BIT c) = (x XOR y) BIT ((b \ c) \ \ (b \ c))" + unfolding int_xor_def by auto + +subsubsection {* Binary destructors *} + +lemma bin_rest_NOT [simp]: "bin_rest (NOT x) = NOT (bin_rest x)" + by (cases x rule: bin_exhaust, simp) + +lemma bin_last_NOT [simp]: "bin_last (NOT x) \ \ bin_last x" + by (cases x rule: bin_exhaust, simp) + +lemma bin_rest_AND [simp]: "bin_rest (x AND y) = bin_rest x AND bin_rest y" + by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) + +lemma bin_last_AND [simp]: "bin_last (x AND y) \ bin_last x \ bin_last y" + by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) + +lemma bin_rest_OR [simp]: "bin_rest (x OR y) = bin_rest x OR bin_rest y" + by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) + +lemma bin_last_OR [simp]: "bin_last (x OR y) \ bin_last x \ bin_last y" + by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) + +lemma bin_rest_XOR [simp]: "bin_rest (x XOR y) = bin_rest x XOR bin_rest y" + by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) + +lemma bin_last_XOR [simp]: "bin_last (x XOR y) \ (bin_last x \ bin_last y) \ \ (bin_last x \ bin_last y)" + by (cases x rule: bin_exhaust, cases y rule: bin_exhaust, simp) + +lemma bin_nth_ops: + "!!x y. bin_nth (x AND y) n = (bin_nth x n & bin_nth y n)" + "!!x y. bin_nth (x OR y) n = (bin_nth x n | bin_nth y n)" + "!!x y. bin_nth (x XOR y) n = (bin_nth x n ~= bin_nth y n)" + "!!x. bin_nth (NOT x) n = (~ bin_nth x n)" + by (induct n) auto + +subsubsection {* Derived properties *} + +lemma int_xor_minus1 [simp]: "(-1::int) XOR x = NOT x" + by (auto simp add: bin_eq_iff bin_nth_ops) + +lemma int_xor_extra_simps [simp]: + "w XOR (0::int) = w" + "w XOR (-1::int) = NOT w" + by (auto simp add: bin_eq_iff bin_nth_ops) + +lemma int_or_extra_simps [simp]: + "w OR (0::int) = w" + "w OR (-1::int) = -1" + by (auto simp add: bin_eq_iff bin_nth_ops) + +lemma int_and_extra_simps [simp]: + "w AND (0::int) = 0" + "w AND (-1::int) = w" + by (auto simp add: bin_eq_iff bin_nth_ops) + +(* commutativity of the above *) +lemma bin_ops_comm: + shows + int_and_comm: "!!y::int. x AND y = y AND x" and + int_or_comm: "!!y::int. x OR y = y OR x" and + int_xor_comm: "!!y::int. x XOR y = y XOR x" + by (auto simp add: bin_eq_iff bin_nth_ops) + +lemma bin_ops_same [simp]: + "(x::int) AND x = x" + "(x::int) OR x = x" + "(x::int) XOR x = 0" + by (auto simp add: bin_eq_iff bin_nth_ops) + +lemmas bin_log_esimps = + int_and_extra_simps int_or_extra_simps int_xor_extra_simps + int_and_0 int_and_m1 int_or_zero int_or_minus1 int_xor_zero int_xor_minus1 + +(* basic properties of logical (bit-wise) operations *) + +lemma bbw_ao_absorb: + "!!y::int. x AND (y OR x) = x & x OR (y AND x) = x" + by (auto simp add: bin_eq_iff bin_nth_ops) + +lemma bbw_ao_absorbs_other: + "x AND (x OR y) = x \ (y AND x) OR x = (x::int)" + "(y OR x) AND x = x \ x OR (x AND y) = (x::int)" + "(x OR y) AND x = x \ (x AND y) OR x = (x::int)" + by (auto simp add: bin_eq_iff bin_nth_ops) + +lemmas bbw_ao_absorbs [simp] = bbw_ao_absorb bbw_ao_absorbs_other + +lemma int_xor_not: + "!!y::int. (NOT x) XOR y = NOT (x XOR y) & + x XOR (NOT y) = NOT (x XOR y)" + by (auto simp add: bin_eq_iff bin_nth_ops) + +lemma int_and_assoc: + "(x AND y) AND (z::int) = x AND (y AND z)" + by (auto simp add: bin_eq_iff bin_nth_ops) + +lemma int_or_assoc: + "(x OR y) OR (z::int) = x OR (y OR z)" + by (auto simp add: bin_eq_iff bin_nth_ops) + +lemma int_xor_assoc: + "(x XOR y) XOR (z::int) = x XOR (y XOR z)" + by (auto simp add: bin_eq_iff bin_nth_ops) + +lemmas bbw_assocs = int_and_assoc int_or_assoc int_xor_assoc + +(* BH: Why are these declared as simp rules??? *) +lemma bbw_lcs [simp]: + "(y::int) AND (x AND z) = x AND (y AND z)" + "(y::int) OR (x OR z) = x OR (y OR z)" + "(y::int) XOR (x XOR z) = x XOR (y XOR z)" + by (auto simp add: bin_eq_iff bin_nth_ops) + +lemma bbw_not_dist: + "!!y::int. NOT (x OR y) = (NOT x) AND (NOT y)" + "!!y::int. NOT (x AND y) = (NOT x) OR (NOT y)" + by (auto simp add: bin_eq_iff bin_nth_ops) + +lemma bbw_oa_dist: + "!!y z::int. (x AND y) OR z = + (x OR z) AND (y OR z)" + by (auto simp add: bin_eq_iff bin_nth_ops) + +lemma bbw_ao_dist: + "!!y z::int. (x OR y) AND z = + (x AND z) OR (y AND z)" + by (auto simp add: bin_eq_iff bin_nth_ops) + +(* +Why were these declared simp??? +declare bin_ops_comm [simp] bbw_assocs [simp] +*) + +subsubsection {* Simplification with numerals *} + +text {* Cases for @{text "0"} and @{text "-1"} are already covered by + other simp rules. *} + +lemma bin_rl_eqI: "\bin_rest x = bin_rest y; bin_last x = bin_last y\ \ x = y" + by (metis (mono_tags) BIT_eq_iff bin_ex_rl bin_last_BIT bin_rest_BIT) + +lemma bin_rest_neg_numeral_BitM [simp]: + "bin_rest (- numeral (Num.BitM w)) = - numeral w" + by (simp only: BIT_bin_simps [symmetric] bin_rest_BIT) + +lemma bin_last_neg_numeral_BitM [simp]: + "bin_last (- numeral (Num.BitM w))" + by (simp only: BIT_bin_simps [symmetric] bin_last_BIT) + +text {* FIXME: The rule sets below are very large (24 rules for each + operator). Is there a simpler way to do this? *} + +lemma int_and_numerals [simp]: + "numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = (numeral x AND numeral y) BIT False" + "numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = (numeral x AND numeral y) BIT False" + "numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = (numeral x AND numeral y) BIT False" + "numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = (numeral x AND numeral y) BIT True" + "numeral (Num.Bit0 x) AND - numeral (Num.Bit0 y) = (numeral x AND - numeral y) BIT False" + "numeral (Num.Bit0 x) AND - numeral (Num.Bit1 y) = (numeral x AND - numeral (y + Num.One)) BIT False" + "numeral (Num.Bit1 x) AND - numeral (Num.Bit0 y) = (numeral x AND - numeral y) BIT False" + "numeral (Num.Bit1 x) AND - numeral (Num.Bit1 y) = (numeral x AND - numeral (y + Num.One)) BIT True" + "- numeral (Num.Bit0 x) AND numeral (Num.Bit0 y) = (- numeral x AND numeral y) BIT False" + "- numeral (Num.Bit0 x) AND numeral (Num.Bit1 y) = (- numeral x AND numeral y) BIT False" + "- numeral (Num.Bit1 x) AND numeral (Num.Bit0 y) = (- numeral (x + Num.One) AND numeral y) BIT False" + "- numeral (Num.Bit1 x) AND numeral (Num.Bit1 y) = (- numeral (x + Num.One) AND numeral y) BIT True" + "- numeral (Num.Bit0 x) AND - numeral (Num.Bit0 y) = (- numeral x AND - numeral y) BIT False" + "- numeral (Num.Bit0 x) AND - numeral (Num.Bit1 y) = (- numeral x AND - numeral (y + Num.One)) BIT False" + "- numeral (Num.Bit1 x) AND - numeral (Num.Bit0 y) = (- numeral (x + Num.One) AND - numeral y) BIT False" + "- numeral (Num.Bit1 x) AND - numeral (Num.Bit1 y) = (- numeral (x + Num.One) AND - numeral (y + Num.One)) BIT True" + "(1::int) AND numeral (Num.Bit0 y) = 0" + "(1::int) AND numeral (Num.Bit1 y) = 1" + "(1::int) AND - numeral (Num.Bit0 y) = 0" + "(1::int) AND - numeral (Num.Bit1 y) = 1" + "numeral (Num.Bit0 x) AND (1::int) = 0" + "numeral (Num.Bit1 x) AND (1::int) = 1" + "- numeral (Num.Bit0 x) AND (1::int) = 0" + "- numeral (Num.Bit1 x) AND (1::int) = 1" + by (rule bin_rl_eqI, simp, simp)+ + +lemma int_or_numerals [simp]: + "numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = (numeral x OR numeral y) BIT False" + "numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = (numeral x OR numeral y) BIT True" + "numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = (numeral x OR numeral y) BIT True" + "numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = (numeral x OR numeral y) BIT True" + "numeral (Num.Bit0 x) OR - numeral (Num.Bit0 y) = (numeral x OR - numeral y) BIT False" + "numeral (Num.Bit0 x) OR - numeral (Num.Bit1 y) = (numeral x OR - numeral (y + Num.One)) BIT True" + "numeral (Num.Bit1 x) OR - numeral (Num.Bit0 y) = (numeral x OR - numeral y) BIT True" + "numeral (Num.Bit1 x) OR - numeral (Num.Bit1 y) = (numeral x OR - numeral (y + Num.One)) BIT True" + "- numeral (Num.Bit0 x) OR numeral (Num.Bit0 y) = (- numeral x OR numeral y) BIT False" + "- numeral (Num.Bit0 x) OR numeral (Num.Bit1 y) = (- numeral x OR numeral y) BIT True" + "- numeral (Num.Bit1 x) OR numeral (Num.Bit0 y) = (- numeral (x + Num.One) OR numeral y) BIT True" + "- numeral (Num.Bit1 x) OR numeral (Num.Bit1 y) = (- numeral (x + Num.One) OR numeral y) BIT True" + "- numeral (Num.Bit0 x) OR - numeral (Num.Bit0 y) = (- numeral x OR - numeral y) BIT False" + "- numeral (Num.Bit0 x) OR - numeral (Num.Bit1 y) = (- numeral x OR - numeral (y + Num.One)) BIT True" + "- numeral (Num.Bit1 x) OR - numeral (Num.Bit0 y) = (- numeral (x + Num.One) OR - numeral y) BIT True" + "- numeral (Num.Bit1 x) OR - numeral (Num.Bit1 y) = (- numeral (x + Num.One) OR - numeral (y + Num.One)) BIT True" + "(1::int) OR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)" + "(1::int) OR numeral (Num.Bit1 y) = numeral (Num.Bit1 y)" + "(1::int) OR - numeral (Num.Bit0 y) = - numeral (Num.BitM y)" + "(1::int) OR - numeral (Num.Bit1 y) = - numeral (Num.Bit1 y)" + "numeral (Num.Bit0 x) OR (1::int) = numeral (Num.Bit1 x)" + "numeral (Num.Bit1 x) OR (1::int) = numeral (Num.Bit1 x)" + "- numeral (Num.Bit0 x) OR (1::int) = - numeral (Num.BitM x)" + "- numeral (Num.Bit1 x) OR (1::int) = - numeral (Num.Bit1 x)" + by (rule bin_rl_eqI, simp, simp)+ + +lemma int_xor_numerals [simp]: + "numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = (numeral x XOR numeral y) BIT False" + "numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = (numeral x XOR numeral y) BIT True" + "numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = (numeral x XOR numeral y) BIT True" + "numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = (numeral x XOR numeral y) BIT False" + "numeral (Num.Bit0 x) XOR - numeral (Num.Bit0 y) = (numeral x XOR - numeral y) BIT False" + "numeral (Num.Bit0 x) XOR - numeral (Num.Bit1 y) = (numeral x XOR - numeral (y + Num.One)) BIT True" + "numeral (Num.Bit1 x) XOR - numeral (Num.Bit0 y) = (numeral x XOR - numeral y) BIT True" + "numeral (Num.Bit1 x) XOR - numeral (Num.Bit1 y) = (numeral x XOR - numeral (y + Num.One)) BIT False" + "- numeral (Num.Bit0 x) XOR numeral (Num.Bit0 y) = (- numeral x XOR numeral y) BIT False" + "- numeral (Num.Bit0 x) XOR numeral (Num.Bit1 y) = (- numeral x XOR numeral y) BIT True" + "- numeral (Num.Bit1 x) XOR numeral (Num.Bit0 y) = (- numeral (x + Num.One) XOR numeral y) BIT True" + "- numeral (Num.Bit1 x) XOR numeral (Num.Bit1 y) = (- numeral (x + Num.One) XOR numeral y) BIT False" + "- numeral (Num.Bit0 x) XOR - numeral (Num.Bit0 y) = (- numeral x XOR - numeral y) BIT False" + "- numeral (Num.Bit0 x) XOR - numeral (Num.Bit1 y) = (- numeral x XOR - numeral (y + Num.One)) BIT True" + "- numeral (Num.Bit1 x) XOR - numeral (Num.Bit0 y) = (- numeral (x + Num.One) XOR - numeral y) BIT True" + "- numeral (Num.Bit1 x) XOR - numeral (Num.Bit1 y) = (- numeral (x + Num.One) XOR - numeral (y + Num.One)) BIT False" + "(1::int) XOR numeral (Num.Bit0 y) = numeral (Num.Bit1 y)" + "(1::int) XOR numeral (Num.Bit1 y) = numeral (Num.Bit0 y)" + "(1::int) XOR - numeral (Num.Bit0 y) = - numeral (Num.BitM y)" + "(1::int) XOR - numeral (Num.Bit1 y) = - numeral (Num.Bit0 (y + Num.One))" + "numeral (Num.Bit0 x) XOR (1::int) = numeral (Num.Bit1 x)" + "numeral (Num.Bit1 x) XOR (1::int) = numeral (Num.Bit0 x)" + "- numeral (Num.Bit0 x) XOR (1::int) = - numeral (Num.BitM x)" + "- numeral (Num.Bit1 x) XOR (1::int) = - numeral (Num.Bit0 (x + Num.One))" + by (rule bin_rl_eqI, simp, simp)+ + +subsubsection {* Interactions with arithmetic *} + +lemma plus_and_or [rule_format]: + "ALL y::int. (x AND y) + (x OR y) = x + y" + apply (induct x rule: bin_induct) + apply clarsimp + apply clarsimp + apply clarsimp + apply (case_tac y rule: bin_exhaust) + apply clarsimp + apply (unfold Bit_def) + apply clarsimp + apply (erule_tac x = "x" in allE) + apply simp + done + +lemma le_int_or: + "bin_sign (y::int) = 0 ==> x <= x OR y" + apply (induct y arbitrary: x rule: bin_induct) + apply clarsimp + apply clarsimp + apply (case_tac x rule: bin_exhaust) + apply (case_tac b) + apply (case_tac [!] bit) + apply (auto simp: le_Bits) + done + +lemmas int_and_le = + xtrans(3) [OF bbw_ao_absorbs (2) [THEN conjunct2, symmetric] le_int_or] + +(* interaction between bit-wise and arithmetic *) +(* good example of bin_induction *) +lemma bin_add_not: "x + NOT x = (-1::int)" + apply (induct x rule: bin_induct) + apply clarsimp + apply clarsimp + apply (case_tac bit, auto) + done + +subsubsection {* Truncating results of bit-wise operations *} + +lemma bin_trunc_ao: + "!!x y. (bintrunc n x) AND (bintrunc n y) = bintrunc n (x AND y)" + "!!x y. (bintrunc n x) OR (bintrunc n y) = bintrunc n (x OR y)" + by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr) + +lemma bin_trunc_xor: + "!!x y. bintrunc n (bintrunc n x XOR bintrunc n y) = + bintrunc n (x XOR y)" + by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr) + +lemma bin_trunc_not: + "!!x. bintrunc n (NOT (bintrunc n x)) = bintrunc n (NOT x)" + by (auto simp add: bin_eq_iff bin_nth_ops nth_bintr) + +(* want theorems of the form of bin_trunc_xor *) +lemma bintr_bintr_i: + "x = bintrunc n y ==> bintrunc n x = bintrunc n y" + by auto + +lemmas bin_trunc_and = bin_trunc_ao(1) [THEN bintr_bintr_i] +lemmas bin_trunc_or = bin_trunc_ao(2) [THEN bintr_bintr_i] + +subsection {* Setting and clearing bits *} + +primrec + bin_sc :: "nat => bool => int => int" +where + Z: "bin_sc 0 b w = bin_rest w BIT b" + | Suc: "bin_sc (Suc n) b w = bin_sc n b (bin_rest w) BIT bin_last w" + +(** nth bit, set/clear **) + +lemma bin_nth_sc [simp]: + "bin_nth (bin_sc n b w) n \ b" + by (induct n arbitrary: w) auto + +lemma bin_sc_sc_same [simp]: + "bin_sc n c (bin_sc n b w) = bin_sc n c w" + by (induct n arbitrary: w) auto + +lemma bin_sc_sc_diff: + "m ~= n ==> + bin_sc m c (bin_sc n b w) = bin_sc n b (bin_sc m c w)" + apply (induct n arbitrary: w m) + apply (case_tac [!] m) + apply auto + done + +lemma bin_nth_sc_gen: + "bin_nth (bin_sc n b w) m = (if m = n then b else bin_nth w m)" + by (induct n arbitrary: w m) (case_tac [!] m, auto) + +lemma bin_sc_nth [simp]: + "(bin_sc n (bin_nth w n) w) = w" + by (induct n arbitrary: w) auto + +lemma bin_sign_sc [simp]: + "bin_sign (bin_sc n b w) = bin_sign w" + by (induct n arbitrary: w) auto + +lemma bin_sc_bintr [simp]: + "bintrunc m (bin_sc n x (bintrunc m (w))) = bintrunc m (bin_sc n x w)" + apply (induct n arbitrary: w m) + apply (case_tac [!] w rule: bin_exhaust) + apply (case_tac [!] m, auto) + done + +lemma bin_clr_le: + "bin_sc n False w <= w" + apply (induct n arbitrary: w) + apply (case_tac [!] w rule: bin_exhaust) + apply (auto simp: le_Bits) + done + +lemma bin_set_ge: + "bin_sc n True w >= w" + apply (induct n arbitrary: w) + apply (case_tac [!] w rule: bin_exhaust) + apply (auto simp: le_Bits) + done + +lemma bintr_bin_clr_le: + "bintrunc n (bin_sc m False w) <= bintrunc n w" + apply (induct n arbitrary: w m) + apply simp + apply (case_tac w rule: bin_exhaust) + apply (case_tac m) + apply (auto simp: le_Bits) + done + +lemma bintr_bin_set_ge: + "bintrunc n (bin_sc m True w) >= bintrunc n w" + apply (induct n arbitrary: w m) + apply simp + apply (case_tac w rule: bin_exhaust) + apply (case_tac m) + apply (auto simp: le_Bits) + done + +lemma bin_sc_FP [simp]: "bin_sc n False 0 = 0" + by (induct n) auto + +lemma bin_sc_TM [simp]: "bin_sc n True -1 = -1" + by (induct n) auto + +lemmas bin_sc_simps = bin_sc.Z bin_sc.Suc bin_sc_TM bin_sc_FP + +lemma bin_sc_minus: + "0 < n ==> bin_sc (Suc (n - 1)) b w = bin_sc n b w" + by auto + +lemmas bin_sc_Suc_minus = + trans [OF bin_sc_minus [symmetric] bin_sc.Suc] + +lemma bin_sc_numeral [simp]: + "bin_sc (numeral k) b w = + bin_sc (pred_numeral k) b (bin_rest w) BIT bin_last w" + by (simp add: numeral_eq_Suc) + + +subsection {* Splitting and concatenation *} + +definition bin_rcat :: "nat \ int list \ int" +where + "bin_rcat n = foldl (\u v. bin_cat u n v) 0" + +fun bin_rsplit_aux :: "nat \ nat \ int \ int list \ int list" +where + "bin_rsplit_aux n m c bs = + (if m = 0 | n = 0 then bs else + let (a, b) = bin_split n c + in bin_rsplit_aux n (m - n) a (b # bs))" + +definition bin_rsplit :: "nat \ nat \ int \ int list" +where + "bin_rsplit n w = bin_rsplit_aux n (fst w) (snd w) []" + +fun bin_rsplitl_aux :: "nat \ nat \ int \ int list \ int list" +where + "bin_rsplitl_aux n m c bs = + (if m = 0 | n = 0 then bs else + let (a, b) = bin_split (min m n) c + in bin_rsplitl_aux n (m - n) a (b # bs))" + +definition bin_rsplitl :: "nat \ nat \ int \ int list" +where + "bin_rsplitl n w = bin_rsplitl_aux n (fst w) (snd w) []" + +declare bin_rsplit_aux.simps [simp del] +declare bin_rsplitl_aux.simps [simp del] + +lemma bin_sign_cat: + "bin_sign (bin_cat x n y) = bin_sign x" + by (induct n arbitrary: y) auto + +lemma bin_cat_Suc_Bit: + "bin_cat w (Suc n) (v BIT b) = bin_cat w n v BIT b" + by auto + +lemma bin_nth_cat: + "bin_nth (bin_cat x k y) n = + (if n < k then bin_nth y n else bin_nth x (n - k))" + apply (induct k arbitrary: n y) + apply clarsimp + apply (case_tac n, auto) + done + +lemma bin_nth_split: + "bin_split n c = (a, b) ==> + (ALL k. bin_nth a k = bin_nth c (n + k)) & + (ALL k. bin_nth b k = (k < n & bin_nth c k))" + apply (induct n arbitrary: b c) + apply clarsimp + apply (clarsimp simp: Let_def split: prod.split_asm) + apply (case_tac k) + apply auto + done + +lemma bin_cat_assoc: + "bin_cat (bin_cat x m y) n z = bin_cat x (m + n) (bin_cat y n z)" + by (induct n arbitrary: z) auto + +lemma bin_cat_assoc_sym: + "bin_cat x m (bin_cat y n z) = bin_cat (bin_cat x (m - n) y) (min m n) z" + apply (induct n arbitrary: z m, clarsimp) + apply (case_tac m, auto) + done + +lemma bin_cat_zero [simp]: "bin_cat 0 n w = bintrunc n w" + by (induct n arbitrary: w) auto + +lemma bintr_cat1: + "bintrunc (k + n) (bin_cat a n b) = bin_cat (bintrunc k a) n b" + by (induct n arbitrary: b) auto + +lemma bintr_cat: "bintrunc m (bin_cat a n b) = + bin_cat (bintrunc (m - n) a) n (bintrunc (min m n) b)" + by (rule bin_eqI) (auto simp: bin_nth_cat nth_bintr) + +lemma bintr_cat_same [simp]: + "bintrunc n (bin_cat a n b) = bintrunc n b" + by (auto simp add : bintr_cat) + +lemma cat_bintr [simp]: + "bin_cat a n (bintrunc n b) = bin_cat a n b" + by (induct n arbitrary: b) auto + +lemma split_bintrunc: + "bin_split n c = (a, b) ==> b = bintrunc n c" + by (induct n arbitrary: b c) (auto simp: Let_def split: prod.split_asm) + +lemma bin_cat_split: + "bin_split n w = (u, v) ==> w = bin_cat u n v" + by (induct n arbitrary: v w) (auto simp: Let_def split: prod.split_asm) + +lemma bin_split_cat: + "bin_split n (bin_cat v n w) = (v, bintrunc n w)" + by (induct n arbitrary: w) auto + +lemma bin_split_zero [simp]: "bin_split n 0 = (0, 0)" + by (induct n) auto + +lemma bin_split_minus1 [simp]: + "bin_split n -1 = (-1, bintrunc n -1)" + by (induct n) auto + +lemma bin_split_trunc: + "bin_split (min m n) c = (a, b) ==> + bin_split n (bintrunc m c) = (bintrunc (m - n) a, b)" + apply (induct n arbitrary: m b c, clarsimp) + apply (simp add: bin_rest_trunc Let_def split: prod.split_asm) + apply (case_tac m) + apply (auto simp: Let_def split: prod.split_asm) + done + +lemma bin_split_trunc1: + "bin_split n c = (a, b) ==> + bin_split n (bintrunc m c) = (bintrunc (m - n) a, bintrunc m b)" + apply (induct n arbitrary: m b c, clarsimp) + apply (simp add: bin_rest_trunc Let_def split: prod.split_asm) + apply (case_tac m) + apply (auto simp: Let_def split: prod.split_asm) + done + +lemma bin_cat_num: + "bin_cat a n b = a * 2 ^ n + bintrunc n b" + apply (induct n arbitrary: b, clarsimp) + apply (simp add: Bit_def) + done + +lemma bin_split_num: + "bin_split n b = (b div 2 ^ n, b mod 2 ^ n)" + apply (induct n arbitrary: b, simp) + apply (simp add: bin_rest_def zdiv_zmult2_eq) + apply (case_tac b rule: bin_exhaust) + apply simp + apply (simp add: Bit_def mod_mult_mult1 p1mod22k) + done + +subsection {* Miscellaneous lemmas *} + +lemma nth_2p_bin: + "bin_nth (2 ^ n) m = (m = n)" + apply (induct n arbitrary: m) + apply clarsimp + apply safe + apply (case_tac m) + apply (auto simp: Bit_B0_2t [symmetric]) + done + +(* for use when simplifying with bin_nth_Bit *) + +lemma ex_eq_or: + "(EX m. n = Suc m & (m = k | P m)) = (n = Suc k | (EX m. n = Suc m & P m))" + by auto + +lemma power_BIT: "2 ^ (Suc n) - 1 = (2 ^ n - 1) BIT True" + unfolding Bit_B1 + by (induct n) simp_all + +lemma mod_BIT: + "bin BIT bit mod 2 ^ Suc n = (bin mod 2 ^ n) BIT bit" +proof - + have "bin mod 2 ^ n < 2 ^ n" by simp + then have "bin mod 2 ^ n \ 2 ^ n - 1" by simp + then have "2 * (bin mod 2 ^ n) \ 2 * (2 ^ n - 1)" + by (rule mult_left_mono) simp + then have "2 * (bin mod 2 ^ n) + 1 < 2 * 2 ^ n" by simp + then show ?thesis + by (auto simp add: Bit_def mod_mult_mult1 mod_add_left_eq [of "2 * bin"] + mod_pos_pos_trivial) +qed + +lemma AND_mod: + fixes x :: int + shows "x AND 2 ^ n - 1 = x mod 2 ^ n" +proof (induct x arbitrary: n rule: bin_induct) + case 1 + then show ?case + by simp +next + case 2 + then show ?case + by (simp, simp add: m1mod2k) +next + case (3 bin bit) + show ?case + proof (cases n) + case 0 + then show ?thesis by simp + next + case (Suc m) + with 3 show ?thesis + by (simp only: power_BIT mod_BIT int_and_Bits) simp + qed +qed + +end + diff -r a435932a9f12 -r 3324a0078636 src/HOL/Word/Bool_List_Representation.thy --- a/src/HOL/Word/Bool_List_Representation.thy Mon Dec 23 16:29:43 2013 +0100 +++ b/src/HOL/Word/Bool_List_Representation.thy Mon Dec 23 18:37:51 2013 +0100 @@ -9,7 +9,7 @@ header "Bool lists and integers" theory Bool_List_Representation -imports Bit_Int +imports Bits_Int begin definition map2 :: "('a \ 'b \ 'c) \ 'a list \ 'b list \ 'c list" diff -r a435932a9f12 -r 3324a0078636 src/HOL/Word/Word.thy --- a/src/HOL/Word/Word.thy Mon Dec 23 16:29:43 2013 +0100 +++ b/src/HOL/Word/Word.thy Mon Dec 23 18:37:51 2013 +0100 @@ -8,7 +8,7 @@ imports Type_Length "~~/src/HOL/Library/Boolean_Algebra" - Bit_Bit + Bits_Bit Bool_List_Representation Misc_Typedef Word_Miscellaneous