# HG changeset patch # User avigad # Date 1123073277 -7200 # Node ID 332c28b2844eb281cdf1f37a7aef3726e7005d28 # Parent cffca870816ab5079129963ac832c17f583577ae removed Lfp diff -r cffca870816a -r 332c28b2844e src/HOL/Lfp.thy --- a/src/HOL/Lfp.thy Wed Aug 03 14:47:51 2005 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,107 +0,0 @@ -(* Title: HOL/Lfp.thy - ID: $Id$ - Author: Lawrence C Paulson, Cambridge University Computer Laboratory - Copyright 1992 University of Cambridge -*) - -header{*Least Fixed Points and the Knaster-Tarski Theorem*} - -theory Lfp -imports Product_Type -begin - -constdefs - lfp :: "['a set \ 'a set] \ 'a set" - "lfp(f) == Inter({u. f(u) \ u})" --{*least fixed point*} - - - -subsection{*Proof of Knaster-Tarski Theorem using @{term lfp}*} - - -text{*@{term "lfp f"} is the least upper bound of - the set @{term "{u. f(u) \ u}"} *} - -lemma lfp_lowerbound: "f(A) \ A ==> lfp(f) \ A" -by (auto simp add: lfp_def) - -lemma lfp_greatest: "[| !!u. f(u) \ u ==> A\u |] ==> A \ lfp(f)" -by (auto simp add: lfp_def) - -lemma lfp_lemma2: "mono(f) ==> f(lfp(f)) \ lfp(f)" -by (rules intro: lfp_greatest subset_trans monoD lfp_lowerbound) - -lemma lfp_lemma3: "mono(f) ==> lfp(f) \ f(lfp(f))" -by (rules intro: lfp_lemma2 monoD lfp_lowerbound) - -lemma lfp_unfold: "mono(f) ==> lfp(f) = f(lfp(f))" -by (rules intro: equalityI lfp_lemma2 lfp_lemma3) - -subsection{*General induction rules for greatest fixed points*} - -lemma lfp_induct: - assumes lfp: "a: lfp(f)" - and mono: "mono(f)" - and indhyp: "!!x. [| x: f(lfp(f) Int {x. P(x)}) |] ==> P(x)" - shows "P(a)" -apply (rule_tac a=a in Int_lower2 [THEN subsetD, THEN CollectD]) -apply (rule lfp [THEN [2] lfp_lowerbound [THEN subsetD]]) -apply (rule Int_greatest) - apply (rule subset_trans [OF Int_lower1 [THEN mono [THEN monoD]] - mono [THEN lfp_lemma2]]) -apply (blast intro: indhyp) -done - - -text{*Version of induction for binary relations*} -lemmas lfp_induct2 = lfp_induct [of "(a,b)", split_format (complete)] - - -lemma lfp_ordinal_induct: - assumes mono: "mono f" - shows "[| !!S. P S ==> P(f S); !!M. !S:M. P S ==> P(Union M) |] - ==> P(lfp f)" -apply(subgoal_tac "lfp f = Union{S. S \ lfp f & P S}") - apply (erule ssubst, simp) -apply(subgoal_tac "Union{S. S \ lfp f & P S} \ lfp f") - prefer 2 apply blast -apply(rule equalityI) - prefer 2 apply assumption -apply(drule mono [THEN monoD]) -apply (cut_tac mono [THEN lfp_unfold], simp) -apply (rule lfp_lowerbound, auto) -done - - -text{*Definition forms of @{text lfp_unfold} and @{text lfp_induct}, - to control unfolding*} - -lemma def_lfp_unfold: "[| h==lfp(f); mono(f) |] ==> h = f(h)" -by (auto intro!: lfp_unfold) - -lemma def_lfp_induct: - "[| A == lfp(f); mono(f); a:A; - !!x. [| x: f(A Int {x. P(x)}) |] ==> P(x) - |] ==> P(a)" -by (blast intro: lfp_induct) - -(*Monotonicity of lfp!*) -lemma lfp_mono: "[| !!Z. f(Z)\g(Z) |] ==> lfp(f) \ lfp(g)" -by (rule lfp_lowerbound [THEN lfp_greatest], blast) - - -ML -{* -val lfp_def = thm "lfp_def"; -val lfp_lowerbound = thm "lfp_lowerbound"; -val lfp_greatest = thm "lfp_greatest"; -val lfp_unfold = thm "lfp_unfold"; -val lfp_induct = thm "lfp_induct"; -val lfp_induct2 = thm "lfp_induct2"; -val lfp_ordinal_induct = thm "lfp_ordinal_induct"; -val def_lfp_unfold = thm "def_lfp_unfold"; -val def_lfp_induct = thm "def_lfp_induct"; -val lfp_mono = thm "lfp_mono"; -*} - -end