# HG changeset patch # User wenzelm # Date 935941646 -7200 # Node ID 33c01075d3430ff9bfffcc7b5f391e1924077602 # Parent 1bd8633e8f90f52c4be6d82cf4f9404f8da3f540 The Mutilated Chess Board Problem -- Isar'ized version of HOL/Inductive/Mutil; diff -r 1bd8633e8f90 -r 33c01075d343 src/HOL/Isar_examples/MutilatedCheckerboard.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Isar_examples/MutilatedCheckerboard.thy Sun Aug 29 17:47:26 1999 +0200 @@ -0,0 +1,280 @@ +(* Title: HOL/Isar_examples/MutilatedCheckerboard.thy + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory (original script) + Markus Wenzel, TU Muenchen (Isar document) + +The Mutilated Chess Board Problem, formalized inductively. + Originator is Max Black, according to J A Robinson. + Popularized as the Mutilated Checkerboard Problem by J McCarthy. +*) + +theory MutilatedCheckerboard = Main:; + + +section {* Tilings *}; + +consts + tiling :: "'a set set => 'a set set"; + +inductive "tiling A" + intrs + empty: "{} : tiling A" + Un: "[| a : A; t : tiling A; a <= - t |] ==> a Un t : tiling A"; + + +text "The union of two disjoint tilings is a tiling"; + +lemma tiling_Un: "t : tiling A --> u : tiling A --> t Int u = {} --> t Un u : tiling A"; +proof; + assume "t : tiling A" (is "_ : ??T"); + thus "u : ??T --> t Int u = {} --> t Un u : ??T" (is "??P t"); + proof (induct t set: tiling); + show "??P {}"; by simp; + + fix a t; + assume "a:A" "t : ??T" "??P t" "a <= - t"; + show "??P (a Un t)"; + proof (intro impI); + assume "u : ??T" "(a Un t) Int u = {}"; + have hyp: "t Un u: ??T"; by blast; + have "a <= - (t Un u)"; by blast; + with _ hyp; have "a Un (t Un u) : ??T"; by (rule tiling.Un); + also; have "a Un (t Un u) = (a Un t) Un u"; by (simp only: Un_assoc); + finally; show "... : ??T"; .; + qed; + qed; +qed; + +lemma tiling_UnI: "[| t : tiling A; u : tiling A; t Int u = {} |] ==> t Un u : tiling A"; + by (rule tiling_Un [rulify]); + + +section {* Basic properties of below *}; + +constdefs + below :: "nat => nat set" + "below n == {i. i < n}"; + +lemma below_less_iff [iff]: "(i: below k) = (i < k)"; + by (simp add: below_def); + +lemma below_0 [simp]: "below 0 = {}"; + by (simp add: below_def); + +lemma Sigma_Suc1: "below (Suc n) Times B = ({n} Times B) Un (below n Times B)"; + by (simp add: below_def less_Suc_eq) blast; + +lemma Sigma_Suc2: "A Times below (Suc n) = (A Times {n}) Un (A Times (below n))"; + by (simp add: below_def less_Suc_eq) blast; + +lemmas Sigma_Suc = Sigma_Suc1 Sigma_Suc2; + + +section {* Basic properties of evnodd *}; + +constdefs + evnodd :: "[(nat * nat) set, nat] => (nat * nat) set" + "evnodd A b == A Int {(i, j). (i + j) mod 2 = b}"; + +lemma evnodd_iff: "(i, j): evnodd A b = ((i, j): A & (i + j) mod 2 = b)"; + by (simp add: evnodd_def); + +lemma evnodd_subset: "evnodd A b <= A"; +proof (unfold evnodd_def); + show "!!B. A Int B <= A"; by (rule Int_lower1); +qed; + +lemma evnoddD: "x : evnodd A b ==> x : A"; + by (rule subsetD, rule evnodd_subset); + +lemma evnodd_finite [simp]: "finite A ==> finite (evnodd A b)"; + by (rule finite_subset, rule evnodd_subset); + +lemma evnodd_Un [simp]: "evnodd (A Un B) b = evnodd A b Un evnodd B b"; + by (unfold evnodd_def) blast; + +lemma evnodd_Diff [simp]: "evnodd (A - B) b = evnodd A b - evnodd B b"; + by (unfold evnodd_def) blast; + +lemma evnodd_empty [simp]: "evnodd {} b = {}"; + by (simp add: evnodd_def); + +lemma evnodd_insert [simp]: "evnodd (insert (i, j) C) b = + (if (i + j) mod 2 = b then insert (i, j) (evnodd C b) else evnodd C b)"; + by (simp add: evnodd_def) blast; + + +section {* Dominoes *}; + +consts + domino :: "(nat * nat) set set"; + +inductive domino + intrs + horiz: "{(i, j), (i, Suc j)} : domino" + vertl: "{(i, j), (Suc i, j)} : domino"; + + +lemma dominoes_tile_row: "{i} Times below (n + n) : tiling domino" + (is "??P n" is "??B n : ??T"); +proof (induct n); + have "??B 0 = {}"; by simp; + also; have "... : ??T"; by (rule tiling.empty); + finally; show "??P 0"; .; + + fix n; assume hyp: "??P n"; + let ??a = "{i} Times {Suc (n + n)} Un {i} Times {n + n}"; + + have "??B (Suc n) = ??a Un ??B n"; by (simp add: Sigma_Suc Un_assoc); + also; have "... : ??T"; + proof (rule tiling.Un); + have "{(i, n + n), (i, Suc (n + n))} : domino"; by (rule domino.horiz); + also; have "{(i, n + n), (i, Suc (n + n))} = ??a"; by blast; + finally; show "??a : domino"; .; + show "??B n : ??T"; by (rule hyp); + show "??a <= - ??B n"; by force; + qed; + finally; show "??P (Suc n)"; .; +qed; + +lemma dominoes_tile_matrix: "below m Times below (n + n) : tiling domino" + (is "??P m" is "??B m : ??T"); +proof (induct m); + show "??P 0"; by (simp add: tiling.empty) -- {* same as above *}; + + fix m; assume hyp: "??P m"; + let ??t = "{m} Times below (n + n)"; + + have "??B (Suc m) = ??t Un ??B m"; by (simp add: Sigma_Suc); + also; have "... : ??T"; + proof (rule tiling_UnI); + show "??t : ??T"; by (rule dominoes_tile_row); + show "??B m : ??T"; by (rule hyp); + show "??t Int ??B m = {}"; by blast; + qed; + finally; show "??P (Suc m)"; .; +qed; + + +lemma domino_singleton: "[| d : domino; b < 2 |] ==> EX i j. evnodd d b = {(i, j)}"; +proof -; + assume "b < 2"; + assume "d : domino"; + thus ??thesis (is "??P d"); + proof (induct d set: domino); + fix i j; + have b_cases: "b = 0 | b = 1"; by arith; + note [simp] = less_Suc_eq mod_Suc; + from b_cases; show "??P {(i, j), (i, Suc j)}"; by rule auto; + from b_cases; show "??P {(i, j), (Suc i, j)}"; by rule auto; + qed; +qed; + +lemma domino_finite: "d: domino ==> finite d"; +proof (induct set: domino); + fix i j; + show "finite {(i, j), (i, Suc j)}"; by (intro Finites.intrs); + show "finite {(i, j), (Suc i, j)}"; by (intro Finites.intrs); +qed; + + +section {* Tilings of dominoes *}; + +lemma tiling_domino_finite: "t : tiling domino ==> finite t" (is "t : ??T ==> ??F t"); +proof -; + assume "t : ??T"; + thus "??F t"; + proof (induct set: tiling); + show "??F {}"; by (rule Finites.emptyI); + fix a t; assume "??F t"; + assume "a : domino"; hence "??F a"; by (rule domino_finite); + thus "??F (a Un t)"; by (rule finite_UnI); + qed; +qed; + +lemma tiling_domino_01: "t : tiling domino ==> card (evnodd t 0) = card (evnodd t 1)" + (is "t : ??T ==> ??P t"); +proof -; + assume "t : ??T"; + thus "??P t"; + proof (induct set: tiling); + show "??P {}"; by (simp add: evnodd_def); + + fix a t; + let ??e = evnodd; + assume "a : domino" "t : ??T" + and hyp: "card (??e t 0) = card (??e t 1)" + and "a <= - t"; + + have card_suc: "!!b. b < 2 ==> card (??e (a Un t) b) = Suc (card (??e t b))"; + proof -; + fix b; assume "b < 2"; + have "EX i j. ??e a b = {(i, j)}"; by (rule domino_singleton); + thus "??thesis b"; + proof (elim exE); + have "??e (a Un t) b = ??e a b Un ??e t b"; by (rule evnodd_Un); + also; fix i j; assume "??e a b = {(i, j)}"; + also; have "... Un ??e t b = insert (i, j) (??e t b)"; by simp; + finally; have "card (??e (a Un t) b) = card (insert (i, j) (??e t b))"; by simp; + also; have "... = Suc (card (??e t b))"; + proof (rule card_insert_disjoint); + show "finite (??e t b)"; by (rule evnodd_finite, rule tiling_domino_finite); + have "(i, j) : ??e a b"; by asm_simp; + thus "(i, j) ~: ??e t b"; by (force dest: evnoddD); + qed; + finally; show ??thesis; .; + qed; + qed; + hence "card (??e (a Un t) 0) = Suc (card (??e t 0))"; by simp; + also; have "card (??e t 0) = card (??e t 1)"; by (rule hyp); + also; from card_suc; have "Suc ... = card (??e (a Un t) 1)"; by simp; + finally; show "??P (a Un t)"; .; + qed; +qed; + + +section {* Main theorem *}; + +constdefs + mutilated_board :: "nat => nat => (nat * nat) set" + "mutilated_board m n == below (Suc m + Suc m) Times below (Suc n + Suc n) + - {(0, 0)} - {(Suc (m + m), Suc (n + n))}"; + +theorem mutil_not_tiling: "mutilated_board m n ~: tiling domino" (is "_ ~: ??T"); +proof (unfold mutilated_board_def); + let ??t = "below (Suc m + Suc m) Times below (Suc n + Suc n)"; + let ??t' = "??t - {(0, 0)}"; + let ??t'' = "??t' - {(Suc (m + m), Suc (n + n))}"; + show "??t'' ~: ??T"; + proof; + let ??e = evnodd; + note [simp] = evnodd_iff; + assume t'': "??t'' : ??T"; + + have t: "??t : ??T"; by (rule dominoes_tile_matrix); + have fin: "finite (??e ??t 0)"; by (rule evnodd_finite, rule tiling_domino_finite, rule t); + + have "card (??e ??t'' 0) < card (??e ??t' 0)"; + proof -; + have "card (??e ??t' 0 - {(Suc (m + m), Suc (n + n))}) < card (??e ??t' 0)"; + proof (rule card_Diff1_less); + show "finite (??e ??t' 0)"; by (rule finite_subset, rule fin) force; + show "(Suc (m + m), Suc (n + n)) : ??e ??t' 0"; by simp; + qed; + thus ??thesis; by simp; + qed; + also; have "... < card (??e ??t 0)"; + proof -; + have "(0, 0) : ??e ??t 0"; by simp; + with fin; have "card (??e ??t 0 - {(0, 0)}) < card (??e ??t 0)"; by (rule card_Diff1_less); + thus ??thesis; by simp; + qed; + also; from t; have "... = card (??e ??t 1)"; by (rule tiling_domino_01); + also; have "??e ??t 1 = ??e ??t'' 1"; by simp; + also; have "card ... = card (??e ??t'' 0)"; by (rule sym, rule tiling_domino_01); + finally; show False; ..; + qed; +qed; + + +end; \ No newline at end of file