# HG changeset patch # User wenzelm # Date 1451500908 -3600 # Node ID 34b51f436e929db5e8d8567248522938977a1d5c # Parent 305baa3fc2207e53480cb33c27f1f42fefe8217f clarified print modes; diff -r 305baa3fc220 -r 34b51f436e92 src/HOL/Probability/Fin_Map.thy --- a/src/HOL/Probability/Fin_Map.thy Wed Dec 30 18:47:13 2015 +0100 +++ b/src/HOL/Probability/Fin_Map.thy Wed Dec 30 19:41:48 2015 +0100 @@ -101,11 +101,9 @@ "Pi' I A = { P. domain P = I \ (\i. i \ I \ (P)\<^sub>F i \ A i) } " syntax - "_Pi'" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3PI' _:_./ _)" 10) -syntax (xsymbols) "_Pi'" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3\' _\_./ _)" 10) translations - "PI' x:A. B" == "CONST Pi' A (%x. B)" + "\' x\A. B" == "CONST Pi' A (\x. B)" subsubsection\Basic Properties of @{term Pi'}\ @@ -610,11 +608,9 @@ "Pi\<^sub>F I M \ PiF I M" syntax - "_PiF" :: "pttrn \ 'i set \ 'a measure \ ('i => 'a) measure" ("(3PIF _:_./ _)" 10) -syntax (xsymbols) "_PiF" :: "pttrn \ 'i set \ 'a measure \ ('i => 'a) measure" ("(3\\<^sub>F _\_./ _)" 10) translations - "PIF x:I. M" == "CONST PiF I (%x. M)" + "\\<^sub>F x\I. M" == "CONST PiF I (%x. M)" lemma PiF_gen_subset: "{(\' j\J. X j) |X J. J \ I \ X \ (\ j\J. sets (M j))} \ Pow (\J \ I. (\' j\J. space (M j)))" @@ -1094,7 +1090,7 @@ qed qed -lemma finmap_UNIV[simp]: "(\J\Collect finite. PI' j : J. UNIV) = UNIV" by auto +lemma finmap_UNIV[simp]: "(\J\Collect finite. \' j\J. UNIV) = UNIV" by auto lemma borel_eq_PiF_borel: shows "(borel :: ('i::countable \\<^sub>F 'a::polish_space) measure) = diff -r 305baa3fc220 -r 34b51f436e92 src/HOL/Probability/Finite_Product_Measure.thy --- a/src/HOL/Probability/Finite_Product_Measure.thy Wed Dec 30 18:47:13 2015 +0100 +++ b/src/HOL/Probability/Finite_Product_Measure.thy Wed Dec 30 19:41:48 2015 +0100 @@ -169,11 +169,9 @@ "Pi\<^sub>M I M \ PiM I M" syntax - "_PiM" :: "pttrn \ 'i set \ 'a measure \ ('i => 'a) measure" ("(3PIM _:_./ _)" 10) -syntax (xsymbols) "_PiM" :: "pttrn \ 'i set \ 'a measure \ ('i => 'a) measure" ("(3\\<^sub>M _\_./ _)" 10) translations - "PIM x:I. M" == "CONST PiM I (%x. M)" + "\\<^sub>M x\I. M" == "CONST PiM I (%x. M)" lemma extend_measure_cong: assumes "\ = \'" "I = I'" "G = G'" "\i. i \ I' \ \ i = \' i" @@ -507,7 +505,7 @@ lemma sets_PiM_I: assumes "finite J" "J \ I" "\i\J. E i \ sets (M i)" - shows "prod_emb I M J (PIE j:J. E j) \ sets (PIM i:I. M i)" + shows "prod_emb I M J (PIE j:J. E j) \ sets (\\<^sub>M i\I. M i)" proof cases assume "J = {}" then have "prod_emb I M J (PIE j:J. E j) = (PIE j:I. space (M j))" @@ -574,7 +572,7 @@ lemma sets_PiM_I_finite[measurable]: assumes "finite I" and sets: "(\i. i \ I \ E i \ sets (M i))" - shows "(PIE j:I. E j) \ sets (PIM i:I. M i)" + shows "(PIE j:I. E j) \ sets (\\<^sub>M i\I. M i)" using sets_PiM_I[of I I E M] sets.sets_into_space[OF sets] \finite I\ sets by auto lemma measurable_component_singleton[measurable (raw)]: