# HG changeset patch # User chaieb # Date 1204119598 -3600 # Node ID 34cb0b457dcca79f7c926c1d5f11d4c7606d643a # Parent ff5bb2b532b3bfd3758ebdca28b5621af32e2c97 Old HOL/Dense_Linear_Order.thy and the setup in Arith_Tools for Ferrante and Rackoff's Quantifier elimination for linear arithmetic over ordered Fields. diff -r ff5bb2b532b3 -r 34cb0b457dcc src/HOL/Library/Dense_Linear_Order.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Library/Dense_Linear_Order.thy Wed Feb 27 14:39:58 2008 +0100 @@ -0,0 +1,879 @@ +(* + ID: $Id$ + Author: Amine Chaieb, TU Muenchen +*) + +header {* Dense linear order without endpoints + and a quantifier elimination procedure in Ferrante and Rackoff style *} + +theory Dense_Linear_Order +imports Arith_Tools +uses + "~~/src/HOL/Tools/Qelim/qelim.ML" + "~~/src/HOL/Tools/Qelim/langford_data.ML" + "~~/src/HOL/Tools/Qelim/ferrante_rackoff_data.ML" + ("~~/src/HOL/Tools/Qelim/langford.ML") + ("~~/src/HOL/Tools/Qelim/ferrante_rackoff.ML") +begin + +setup Langford_Data.setup +setup Ferrante_Rackoff_Data.setup + +context linorder +begin + +lemma less_not_permute: "\ (x < y \ y < x)" by (simp add: not_less linear) + +lemma gather_simps: + shows + "(\x. (\y \ L. y < x) \ (\y \ U. x < y) \ x < u \ P x) \ (\x. (\y \ L. y < x) \ (\y \ (insert u U). x < y) \ P x)" + and "(\x. (\y \ L. y < x) \ (\y \ U. x < y) \ l < x \ P x) \ (\x. (\y \ (insert l L). y < x) \ (\y \ U. x < y) \ P x)" + "(\x. (\y \ L. y < x) \ (\y \ U. x < y) \ x < u) \ (\x. (\y \ L. y < x) \ (\y \ (insert u U). x < y))" + and "(\x. (\y \ L. y < x) \ (\y \ U. x < y) \ l < x) \ (\x. (\y \ (insert l L). y < x) \ (\y \ U. x < y))" by auto + +lemma + gather_start: "(\x. P x) \ (\x. (\y \ {}. y < x) \ (\y\ {}. x < y) \ P x)" + by simp + +text{* Theorems for @{text "\z. \x. x < z \ (P x \ P\<^bsub>-\\<^esub>)"}*} +lemma minf_lt: "\z . \x. x < z \ (x < t \ True)" by auto +lemma minf_gt: "\z . \x. x < z \ (t < x \ False)" + by (simp add: not_less) (rule exI[where x="t"], auto simp add: less_le) + +lemma minf_le: "\z. \x. x < z \ (x \ t \ True)" by (auto simp add: less_le) +lemma minf_ge: "\z. \x. x < z \ (t \ x \ False)" + by (auto simp add: less_le not_less not_le) +lemma minf_eq: "\z. \x. x < z \ (x = t \ False)" by auto +lemma minf_neq: "\z. \x. x < z \ (x \ t \ True)" by auto +lemma minf_P: "\z. \x. x < z \ (P \ P)" by blast + +text{* Theorems for @{text "\z. \x. x < z \ (P x \ P\<^bsub>+\\<^esub>)"}*} +lemma pinf_gt: "\z . \x. z < x \ (t < x \ True)" by auto +lemma pinf_lt: "\z . \x. z < x \ (x < t \ False)" + by (simp add: not_less) (rule exI[where x="t"], auto simp add: less_le) + +lemma pinf_ge: "\z. \x. z < x \ (t \ x \ True)" by (auto simp add: less_le) +lemma pinf_le: "\z. \x. z < x \ (x \ t \ False)" + by (auto simp add: less_le not_less not_le) +lemma pinf_eq: "\z. \x. z < x \ (x = t \ False)" by auto +lemma pinf_neq: "\z. \x. z < x \ (x \ t \ True)" by auto +lemma pinf_P: "\z. \x. z < x \ (P \ P)" by blast + +lemma nmi_lt: "t \ U \ \x. \True \ x < t \ (\ u\ U. u \ x)" by auto +lemma nmi_gt: "t \ U \ \x. \False \ t < x \ (\ u\ U. u \ x)" + by (auto simp add: le_less) +lemma nmi_le: "t \ U \ \x. \True \ x\ t \ (\ u\ U. u \ x)" by auto +lemma nmi_ge: "t \ U \ \x. \False \ t\ x \ (\ u\ U. u \ x)" by auto +lemma nmi_eq: "t \ U \ \x. \False \ x = t \ (\ u\ U. u \ x)" by auto +lemma nmi_neq: "t \ U \\x. \True \ x \ t \ (\ u\ U. u \ x)" by auto +lemma nmi_P: "\ x. ~P \ P \ (\ u\ U. u \ x)" by auto +lemma nmi_conj: "\\x. \P1' \ P1 x \ (\ u\ U. u \ x) ; + \x. \P2' \ P2 x \ (\ u\ U. u \ x)\ \ + \x. \(P1' \ P2') \ (P1 x \ P2 x) \ (\ u\ U. u \ x)" by auto +lemma nmi_disj: "\\x. \P1' \ P1 x \ (\ u\ U. u \ x) ; + \x. \P2' \ P2 x \ (\ u\ U. u \ x)\ \ + \x. \(P1' \ P2') \ (P1 x \ P2 x) \ (\ u\ U. u \ x)" by auto + +lemma npi_lt: "t \ U \ \x. \False \ x < t \ (\ u\ U. x \ u)" by (auto simp add: le_less) +lemma npi_gt: "t \ U \ \x. \True \ t < x \ (\ u\ U. x \ u)" by auto +lemma npi_le: "t \ U \ \x. \False \ x \ t \ (\ u\ U. x \ u)" by auto +lemma npi_ge: "t \ U \ \x. \True \ t \ x \ (\ u\ U. x \ u)" by auto +lemma npi_eq: "t \ U \ \x. \False \ x = t \ (\ u\ U. x \ u)" by auto +lemma npi_neq: "t \ U \ \x. \True \ x \ t \ (\ u\ U. x \ u )" by auto +lemma npi_P: "\ x. ~P \ P \ (\ u\ U. x \ u)" by auto +lemma npi_conj: "\\x. \P1' \ P1 x \ (\ u\ U. x \ u) ; \x. \P2' \ P2 x \ (\ u\ U. x \ u)\ + \ \x. \(P1' \ P2') \ (P1 x \ P2 x) \ (\ u\ U. x \ u)" by auto +lemma npi_disj: "\\x. \P1' \ P1 x \ (\ u\ U. x \ u) ; \x. \P2' \ P2 x \ (\ u\ U. x \ u)\ + \ \x. \(P1' \ P2') \ (P1 x \ P2 x) \ (\ u\ U. x \ u)" by auto + +lemma lin_dense_lt: "t \ U \ \x l u. (\ t. l < t \ t < u \ t \ U) \ l< x \ x < u \ x < t \ (\ y. l < y \ y < u \ y < t)" +proof(clarsimp) + fix x l u y assume tU: "t \ U" and noU: "\t. l < t \ t < u \ t \ U" and lx: "l < x" + and xu: "xy" by auto + {assume H: "t < y" + from less_trans[OF lx px] less_trans[OF H yu] + have "l < t \ t < u" by simp + with tU noU have "False" by auto} + hence "\ t < y" by auto hence "y \ t" by (simp add: not_less) + thus "y < t" using tny by (simp add: less_le) +qed + +lemma lin_dense_gt: "t \ U \ \x l u. (\ t. l < t \ t< u \ t \ U) \ l < x \ x < u \ t < x \ (\ y. l < y \ y < u \ t < y)" +proof(clarsimp) + fix x l u y + assume tU: "t \ U" and noU: "\t. l < t \ t < u \ t \ U" and lx: "l < x" and xu: "xy" by auto + {assume H: "y< t" + from less_trans[OF ly H] less_trans[OF px xu] have "l < t \ t < u" by simp + with tU noU have "False" by auto} + hence "\ y y" by (auto simp add: not_less) + thus "t < y" using tny by (simp add:less_le) +qed + +lemma lin_dense_le: "t \ U \ \x l u. (\ t. l < t \ t< u \ t \ U) \ l< x \ x < u \ x \ t \ (\ y. l < y \ y < u \ y\ t)" +proof(clarsimp) + fix x l u y + assume tU: "t \ U" and noU: "\t. l < t \ t < u \ t \ U" and lx: "l < x" and xu: "x t" and ly: "ly" by auto + {assume H: "t < y" + from less_le_trans[OF lx px] less_trans[OF H yu] + have "l < t \ t < u" by simp + with tU noU have "False" by auto} + hence "\ t < y" by auto thus "y \ t" by (simp add: not_less) +qed + +lemma lin_dense_ge: "t \ U \ \x l u. (\ t. l < t \ t< u \ t \ U) \ l< x \ x < u \ t \ x \ (\ y. l < y \ y < u \ t \ y)" +proof(clarsimp) + fix x l u y + assume tU: "t \ U" and noU: "\t. l < t \ t < u \ t \ U" and lx: "l < x" and xu: "x x" and ly: "ly" by auto + {assume H: "y< t" + from less_trans[OF ly H] le_less_trans[OF px xu] + have "l < t \ t < u" by simp + with tU noU have "False" by auto} + hence "\ y y" by (simp add: not_less) +qed +lemma lin_dense_eq: "t \ U \ \x l u. (\ t. l < t \ t< u \ t \ U) \ l< x \ x < u \ x = t \ (\ y. l < y \ y < u \ y= t)" by auto +lemma lin_dense_neq: "t \ U \ \x l u. (\ t. l < t \ t< u \ t \ U) \ l< x \ x < u \ x \ t \ (\ y. l < y \ y < u \ y\ t)" by auto +lemma lin_dense_P: "\x l u. (\ t. l < t \ t< u \ t \ U) \ l< x \ x < u \ P \ (\ y. l < y \ y < u \ P)" by auto + +lemma lin_dense_conj: + "\\x l u. (\ t. l < t \ t< u \ t \ U) \ l< x \ x < u \ P1 x + \ (\ y. l < y \ y < u \ P1 y) ; + \x l u. (\ t. l < t \ t< u \ t \ U) \ l< x \ x < u \ P2 x + \ (\ y. l < y \ y < u \ P2 y)\ \ + \x l u. (\ t. l < t \ t< u \ t \ U) \ l< x \ x < u \ (P1 x \ P2 x) + \ (\ y. l < y \ y < u \ (P1 y \ P2 y))" + by blast +lemma lin_dense_disj: + "\\x l u. (\ t. l < t \ t< u \ t \ U) \ l< x \ x < u \ P1 x + \ (\ y. l < y \ y < u \ P1 y) ; + \x l u. (\ t. l < t \ t< u \ t \ U) \ l< x \ x < u \ P2 x + \ (\ y. l < y \ y < u \ P2 y)\ \ + \x l u. (\ t. l < t \ t< u \ t \ U) \ l< x \ x < u \ (P1 x \ P2 x) + \ (\ y. l < y \ y < u \ (P1 y \ P2 y))" + by blast + +lemma npmibnd: "\\x. \ MP \ P x \ (\ u\ U. u \ x); \x. \PP \ P x \ (\ u\ U. x \ u)\ + \ \x. \ MP \ \PP \ P x \ (\ u\ U. \ u' \ U. u \ x \ x \ u')" +by auto + +lemma finite_set_intervals: + assumes px: "P x" and lx: "l \ x" and xu: "x \ u" and linS: "l\ S" + and uinS: "u \ S" and fS:"finite S" and lS: "\ x\ S. l \ x" and Su: "\ x\ S. x \ u" + shows "\ a \ S. \ b \ S. (\ y. a < y \ y < b \ y \ S) \ a \ x \ x \ b \ P x" +proof- + let ?Mx = "{y. y\ S \ y \ x}" + let ?xM = "{y. y\ S \ x \ y}" + let ?a = "Max ?Mx" + let ?b = "Min ?xM" + have MxS: "?Mx \ S" by blast + hence fMx: "finite ?Mx" using fS finite_subset by auto + from lx linS have linMx: "l \ ?Mx" by blast + hence Mxne: "?Mx \ {}" by blast + have xMS: "?xM \ S" by blast + hence fxM: "finite ?xM" using fS finite_subset by auto + from xu uinS have linxM: "u \ ?xM" by blast + hence xMne: "?xM \ {}" by blast + have ax:"?a \ x" using Mxne fMx by auto + have xb:"x \ ?b" using xMne fxM by auto + have "?a \ ?Mx" using Max_in[OF fMx Mxne] by simp hence ainS: "?a \ S" using MxS by blast + have "?b \ ?xM" using Min_in[OF fxM xMne] by simp hence binS: "?b \ S" using xMS by blast + have noy:"\ y. ?a < y \ y < ?b \ y \ S" + proof(clarsimp) + fix y assume ay: "?a < y" and yb: "y < ?b" and yS: "y \ S" + from yS have "y\ ?Mx \ y\ ?xM" by (auto simp add: linear) + moreover {assume "y \ ?Mx" hence "y \ ?a" using Mxne fMx by auto with ay have "False" by (simp add: not_le[symmetric])} + moreover {assume "y \ ?xM" hence "?b \ y" using xMne fxM by auto with yb have "False" by (simp add: not_le[symmetric])} + ultimately show "False" by blast + qed + from ainS binS noy ax xb px show ?thesis by blast +qed + +lemma finite_set_intervals2: + assumes px: "P x" and lx: "l \ x" and xu: "x \ u" and linS: "l\ S" + and uinS: "u \ S" and fS:"finite S" and lS: "\ x\ S. l \ x" and Su: "\ x\ S. x \ u" + shows "(\ s\ S. P s) \ (\ a \ S. \ b \ S. (\ y. a < y \ y < b \ y \ S) \ a < x \ x < b \ P x)" +proof- + from finite_set_intervals[where P="P", OF px lx xu linS uinS fS lS Su] + obtain a and b where + as: "a\ S" and bs: "b\ S" and noS:"\y. a < y \ y < b \ y \ S" + and axb: "a \ x \ x \ b \ P x" by auto + from axb have "x= a \ x= b \ (a < x \ x < b)" by (auto simp add: le_less) + thus ?thesis using px as bs noS by blast +qed + +end + +section {* The classical QE after Langford for dense linear orders *} + +context dense_linear_order +begin + +lemma dlo_qe_bnds: + assumes ne: "L \ {}" and neU: "U \ {}" and fL: "finite L" and fU: "finite U" + shows "(\x. (\y \ L. y < x) \ (\y \ U. x < y)) \ (\ l \ L. \u \ U. l < u)" +proof (simp only: atomize_eq, rule iffI) + assume H: "\x. (\y\L. y < x) \ (\y\U. x < y)" + then obtain x where xL: "\y\L. y < x" and xU: "\y\U. x < y" by blast + {fix l u assume l: "l \ L" and u: "u \ U" + have "l < x" using xL l by blast + also have "x < u" using xU u by blast + finally (less_trans) have "l < u" .} + thus "\l\L. \u\U. l < u" by blast +next + assume H: "\l\L. \u\U. l < u" + let ?ML = "Max L" + let ?MU = "Min U" + from fL ne have th1: "?ML \ L" and th1': "\l\L. l \ ?ML" by auto + from fU neU have th2: "?MU \ U" and th2': "\u\U. ?MU \ u" by auto + from th1 th2 H have "?ML < ?MU" by auto + with dense obtain w where th3: "?ML < w" and th4: "w < ?MU" by blast + from th3 th1' have "\l \ L. l < w" by auto + moreover from th4 th2' have "\u \ U. w < u" by auto + ultimately show "\x. (\y\L. y < x) \ (\y\U. x < y)" by auto +qed + +lemma dlo_qe_noub: + assumes ne: "L \ {}" and fL: "finite L" + shows "(\x. (\y \ L. y < x) \ (\y \ {}. x < y)) \ True" +proof(simp add: atomize_eq) + from gt_ex[of "Max L"] obtain M where M: "Max L < M" by blast + from ne fL have "\x \ L. x \ Max L" by simp + with M have "\x\L. x < M" by (auto intro: le_less_trans) + thus "\x. \y\L. y < x" by blast +qed + +lemma dlo_qe_nolb: + assumes ne: "U \ {}" and fU: "finite U" + shows "(\x. (\y \ {}. y < x) \ (\y \ U. x < y)) \ True" +proof(simp add: atomize_eq) + from lt_ex[of "Min U"] obtain M where M: "M < Min U" by blast + from ne fU have "\x \ U. Min U \ x" by simp + with M have "\x\U. M < x" by (auto intro: less_le_trans) + thus "\x. \y\U. x < y" by blast +qed + +lemma exists_neq: "\(x::'a). x \ t" "\(x::'a). t \ x" + using gt_ex[of t] by auto + +lemmas dlo_simps = order_refl less_irrefl not_less not_le exists_neq + le_less neq_iff linear less_not_permute + +lemma axiom: "dense_linear_order (op \) (op <)" by fact +lemma atoms: + includes meta_term_syntax + shows "TERM (less :: 'a \ _)" + and "TERM (less_eq :: 'a \ _)" + and "TERM (op = :: 'a \ _)" . + +declare axiom[langford qe: dlo_qe_bnds dlo_qe_nolb dlo_qe_noub gather: gather_start gather_simps atoms: atoms] +declare dlo_simps[langfordsimp] + +end + +(* FIXME: Move to HOL -- together with the conj_aci_rule in langford.ML *) +lemma dnf: + "(P & (Q | R)) = ((P&Q) | (P&R))" + "((Q | R) & P) = ((Q&P) | (R&P))" + by blast+ + +lemmas weak_dnf_simps = simp_thms dnf + +lemma nnf_simps: + "(\(P \ Q)) = (\P \ \Q)" "(\(P \ Q)) = (\P \ \Q)" "(P \ Q) = (\P \ Q)" + "(P = Q) = ((P \ Q) \ (\P \ \ Q))" "(\ \(P)) = P" + by blast+ + +lemma ex_distrib: "(\x. P x \ Q x) \ ((\x. P x) \ (\x. Q x))" by blast + +lemmas dnf_simps = weak_dnf_simps nnf_simps ex_distrib + +use "~~/src/HOL/Tools/Qelim/langford.ML" +method_setup dlo = {* + Method.ctxt_args (Method.SIMPLE_METHOD' o LangfordQE.dlo_tac) +*} "Langford's algorithm for quantifier elimination in dense linear orders" + + +section {* Contructive dense linear orders yield QE for linear arithmetic over ordered Fields -- see @{text "Arith_Tools.thy"} *} + +text {* Linear order without upper bounds *} + +locale linorder_stupid_syntax = linorder +begin +notation + less_eq ("op \") and + less_eq ("(_/ \ _)" [51, 51] 50) and + less ("op \") and + less ("(_/ \ _)" [51, 51] 50) + +end + +locale linorder_no_ub = linorder_stupid_syntax + + assumes gt_ex: "\y. less x y" +begin +lemma ge_ex: "\y. x \ y" using gt_ex by auto + +text {* Theorems for @{text "\z. \x. z \ x \ (P x \ P\<^bsub>+\\<^esub>)"} *} +lemma pinf_conj: + assumes ex1: "\z1. \x. z1 \ x \ (P1 x \ P1')" + and ex2: "\z2. \x. z2 \ x \ (P2 x \ P2')" + shows "\z. \x. z \ x \ ((P1 x \ P2 x) \ (P1' \ P2'))" +proof- + from ex1 ex2 obtain z1 and z2 where z1: "\x. z1 \ x \ (P1 x \ P1')" + and z2: "\x. z2 \ x \ (P2 x \ P2')" by blast + from gt_ex obtain z where z:"ord.max less_eq z1 z2 \ z" by blast + from z have zz1: "z1 \ z" and zz2: "z2 \ z" by simp_all + {fix x assume H: "z \ x" + from less_trans[OF zz1 H] less_trans[OF zz2 H] + have "(P1 x \ P2 x) \ (P1' \ P2')" using z1 zz1 z2 zz2 by auto + } + thus ?thesis by blast +qed + +lemma pinf_disj: + assumes ex1: "\z1. \x. z1 \ x \ (P1 x \ P1')" + and ex2: "\z2. \x. z2 \ x \ (P2 x \ P2')" + shows "\z. \x. z \ x \ ((P1 x \ P2 x) \ (P1' \ P2'))" +proof- + from ex1 ex2 obtain z1 and z2 where z1: "\x. z1 \ x \ (P1 x \ P1')" + and z2: "\x. z2 \ x \ (P2 x \ P2')" by blast + from gt_ex obtain z where z:"ord.max less_eq z1 z2 \ z" by blast + from z have zz1: "z1 \ z" and zz2: "z2 \ z" by simp_all + {fix x assume H: "z \ x" + from less_trans[OF zz1 H] less_trans[OF zz2 H] + have "(P1 x \ P2 x) \ (P1' \ P2')" using z1 zz1 z2 zz2 by auto + } + thus ?thesis by blast +qed + +lemma pinf_ex: assumes ex:"\z. \x. z \ x \ (P x \ P1)" and p1: P1 shows "\ x. P x" +proof- + from ex obtain z where z: "\x. z \ x \ (P x \ P1)" by blast + from gt_ex obtain x where x: "z \ x" by blast + from z x p1 show ?thesis by blast +qed + +end + +text {* Linear order without upper bounds *} + +locale linorder_no_lb = linorder_stupid_syntax + + assumes lt_ex: "\y. less y x" +begin +lemma le_ex: "\y. y \ x" using lt_ex by auto + + +text {* Theorems for @{text "\z. \x. x \ z \ (P x \ P\<^bsub>-\\<^esub>)"} *} +lemma minf_conj: + assumes ex1: "\z1. \x. x \ z1 \ (P1 x \ P1')" + and ex2: "\z2. \x. x \ z2 \ (P2 x \ P2')" + shows "\z. \x. x \ z \ ((P1 x \ P2 x) \ (P1' \ P2'))" +proof- + from ex1 ex2 obtain z1 and z2 where z1: "\x. x \ z1 \ (P1 x \ P1')"and z2: "\x. x \ z2 \ (P2 x \ P2')" by blast + from lt_ex obtain z where z:"z \ ord.min less_eq z1 z2" by blast + from z have zz1: "z \ z1" and zz2: "z \ z2" by simp_all + {fix x assume H: "x \ z" + from less_trans[OF H zz1] less_trans[OF H zz2] + have "(P1 x \ P2 x) \ (P1' \ P2')" using z1 zz1 z2 zz2 by auto + } + thus ?thesis by blast +qed + +lemma minf_disj: + assumes ex1: "\z1. \x. x \ z1 \ (P1 x \ P1')" + and ex2: "\z2. \x. x \ z2 \ (P2 x \ P2')" + shows "\z. \x. x \ z \ ((P1 x \ P2 x) \ (P1' \ P2'))" +proof- + from ex1 ex2 obtain z1 and z2 where z1: "\x. x \ z1 \ (P1 x \ P1')"and z2: "\x. x \ z2 \ (P2 x \ P2')" by blast + from lt_ex obtain z where z:"z \ ord.min less_eq z1 z2" by blast + from z have zz1: "z \ z1" and zz2: "z \ z2" by simp_all + {fix x assume H: "x \ z" + from less_trans[OF H zz1] less_trans[OF H zz2] + have "(P1 x \ P2 x) \ (P1' \ P2')" using z1 zz1 z2 zz2 by auto + } + thus ?thesis by blast +qed + +lemma minf_ex: assumes ex:"\z. \x. x \ z \ (P x \ P1)" and p1: P1 shows "\ x. P x" +proof- + from ex obtain z where z: "\x. x \ z \ (P x \ P1)" by blast + from lt_ex obtain x where x: "x \ z" by blast + from z x p1 show ?thesis by blast +qed + +end + + +locale constr_dense_linear_order = linorder_no_lb + linorder_no_ub + + fixes between + assumes between_less: "less x y \ less x (between x y) \ less (between x y) y" + and between_same: "between x x = x" + +interpretation constr_dense_linear_order < dense_linear_order + apply unfold_locales + using gt_ex lt_ex between_less + by (auto, rule_tac x="between x y" in exI, simp) + +context constr_dense_linear_order +begin + +lemma rinf_U: + assumes fU: "finite U" + and lin_dense: "\x l u. (\ t. l \ t \ t\ u \ t \ U) \ l\ x \ x \ u \ P x + \ (\ y. l \ y \ y \ u \ P y )" + and nmpiU: "\x. \ MP \ \PP \ P x \ (\ u\ U. \ u' \ U. u \ x \ x \ u')" + and nmi: "\ MP" and npi: "\ PP" and ex: "\ x. P x" + shows "\ u\ U. \ u' \ U. P (between u u')" +proof- + from ex obtain x where px: "P x" by blast + from px nmi npi nmpiU have "\ u\ U. \ u' \ U. u \ x \ x \ u'" by auto + then obtain u and u' where uU:"u\ U" and uU': "u' \ U" and ux:"u \ x" and xu':"x \ u'" by auto + from uU have Une: "U \ {}" by auto + term "linorder.Min less_eq" + let ?l = "linorder.Min less_eq U" + let ?u = "linorder.Max less_eq U" + have linM: "?l \ U" using fU Une by simp + have uinM: "?u \ U" using fU Une by simp + have lM: "\ t\ U. ?l \ t" using Une fU by auto + have Mu: "\ t\ U. t \ ?u" using Une fU by auto + have th:"?l \ u" using uU Une lM by auto + from order_trans[OF th ux] have lx: "?l \ x" . + have th: "u' \ ?u" using uU' Une Mu by simp + from order_trans[OF xu' th] have xu: "x \ ?u" . + from finite_set_intervals2[where P="P",OF px lx xu linM uinM fU lM Mu] + have "(\ s\ U. P s) \ + (\ t1\ U. \ t2 \ U. (\ y. t1 \ y \ y \ t2 \ y \ U) \ t1 \ x \ x \ t2 \ P x)" . + moreover { fix u assume um: "u\U" and pu: "P u" + have "between u u = u" by (simp add: between_same) + with um pu have "P (between u u)" by simp + with um have ?thesis by blast} + moreover{ + assume "\ t1\ U. \ t2 \ U. (\ y. t1 \ y \ y \ t2 \ y \ U) \ t1 \ x \ x \ t2 \ P x" + then obtain t1 and t2 where t1M: "t1 \ U" and t2M: "t2\ U" + and noM: "\ y. t1 \ y \ y \ t2 \ y \ U" and t1x: "t1 \ x" and xt2: "x \ t2" and px: "P x" + by blast + from less_trans[OF t1x xt2] have t1t2: "t1 \ t2" . + let ?u = "between t1 t2" + from between_less t1t2 have t1lu: "t1 \ ?u" and ut2: "?u \ t2" by auto + from lin_dense noM t1x xt2 px t1lu ut2 have "P ?u" by blast + with t1M t2M have ?thesis by blast} + ultimately show ?thesis by blast + qed + +theorem fr_eq: + assumes fU: "finite U" + and lin_dense: "\x l u. (\ t. l \ t \ t\ u \ t \ U) \ l\ x \ x \ u \ P x + \ (\ y. l \ y \ y \ u \ P y )" + and nmibnd: "\x. \ MP \ P x \ (\ u\ U. u \ x)" + and npibnd: "\x. \PP \ P x \ (\ u\ U. x \ u)" + and mi: "\z. \x. x \ z \ (P x = MP)" and pi: "\z. \x. z \ x \ (P x = PP)" + shows "(\ x. P x) \ (MP \ PP \ (\ u \ U. \ u'\ U. P (between u u')))" + (is "_ \ (_ \ _ \ ?F)" is "?E \ ?D") +proof- + { + assume px: "\ x. P x" + have "MP \ PP \ (\ MP \ \ PP)" by blast + moreover {assume "MP \ PP" hence "?D" by blast} + moreover {assume nmi: "\ MP" and npi: "\ PP" + from npmibnd[OF nmibnd npibnd] + have nmpiU: "\x. \ MP \ \PP \ P x \ (\ u\ U. \ u' \ U. u \ x \ x \ u')" . + from rinf_U[OF fU lin_dense nmpiU nmi npi px] have "?D" by blast} + ultimately have "?D" by blast} + moreover + { assume "?D" + moreover {assume m:"MP" from minf_ex[OF mi m] have "?E" .} + moreover {assume p: "PP" from pinf_ex[OF pi p] have "?E" . } + moreover {assume f:"?F" hence "?E" by blast} + ultimately have "?E" by blast} + ultimately have "?E = ?D" by blast thus "?E \ ?D" by simp +qed + +lemmas minf_thms = minf_conj minf_disj minf_eq minf_neq minf_lt minf_le minf_gt minf_ge minf_P +lemmas pinf_thms = pinf_conj pinf_disj pinf_eq pinf_neq pinf_lt pinf_le pinf_gt pinf_ge pinf_P + +lemmas nmi_thms = nmi_conj nmi_disj nmi_eq nmi_neq nmi_lt nmi_le nmi_gt nmi_ge nmi_P +lemmas npi_thms = npi_conj npi_disj npi_eq npi_neq npi_lt npi_le npi_gt npi_ge npi_P +lemmas lin_dense_thms = lin_dense_conj lin_dense_disj lin_dense_eq lin_dense_neq lin_dense_lt lin_dense_le lin_dense_gt lin_dense_ge lin_dense_P + +lemma ferrack_axiom: "constr_dense_linear_order less_eq less between" by fact +lemma atoms: + includes meta_term_syntax + shows "TERM (less :: 'a \ _)" + and "TERM (less_eq :: 'a \ _)" + and "TERM (op = :: 'a \ _)" . + +declare ferrack_axiom [ferrack minf: minf_thms pinf: pinf_thms + nmi: nmi_thms npi: npi_thms lindense: + lin_dense_thms qe: fr_eq atoms: atoms] + +declaration {* +let +fun simps phi = map (Morphism.thm phi) [@{thm "not_less"}, @{thm "not_le"}] +fun generic_whatis phi = + let + val [lt, le] = map (Morphism.term phi) [@{term "op \"}, @{term "op \"}] + fun h x t = + case term_of t of + Const("op =", _)$y$z => if term_of x aconv y then Ferrante_Rackoff_Data.Eq + else Ferrante_Rackoff_Data.Nox + | @{term "Not"}$(Const("op =", _)$y$z) => if term_of x aconv y then Ferrante_Rackoff_Data.NEq + else Ferrante_Rackoff_Data.Nox + | b$y$z => if Term.could_unify (b, lt) then + if term_of x aconv y then Ferrante_Rackoff_Data.Lt + else if term_of x aconv z then Ferrante_Rackoff_Data.Gt + else Ferrante_Rackoff_Data.Nox + else if Term.could_unify (b, le) then + if term_of x aconv y then Ferrante_Rackoff_Data.Le + else if term_of x aconv z then Ferrante_Rackoff_Data.Ge + else Ferrante_Rackoff_Data.Nox + else Ferrante_Rackoff_Data.Nox + | _ => Ferrante_Rackoff_Data.Nox + in h end + fun ss phi = HOL_ss addsimps (simps phi) +in + Ferrante_Rackoff_Data.funs @{thm "ferrack_axiom"} + {isolate_conv = K (K (K Thm.reflexive)), whatis = generic_whatis, simpset = ss} +end +*} + +end + +use "~~/src/HOL/Tools/Qelim/ferrante_rackoff.ML" + +method_setup ferrack = {* + Method.ctxt_args (Method.SIMPLE_METHOD' o FerranteRackoff.dlo_tac) +*} "Ferrante and Rackoff's algorithm for quantifier elimination in dense linear orders" + +subsection {* Ferrante and Rackoff algorithm over ordered fields *} + +lemma neg_prod_lt:"(c\'a\ordered_field) < 0 \ ((c*x < 0) == (x > 0))" +proof- + assume H: "c < 0" + have "c*x < 0 = (0/c < x)" by (simp only: neg_divide_less_eq[OF H] ring_simps) + also have "\ = (0 < x)" by simp + finally show "(c*x < 0) == (x > 0)" by simp +qed + +lemma pos_prod_lt:"(c\'a\ordered_field) > 0 \ ((c*x < 0) == (x < 0))" +proof- + assume H: "c > 0" + hence "c*x < 0 = (0/c > x)" by (simp only: pos_less_divide_eq[OF H] ring_simps) + also have "\ = (0 > x)" by simp + finally show "(c*x < 0) == (x < 0)" by simp +qed + +lemma neg_prod_sum_lt: "(c\'a\ordered_field) < 0 \ ((c*x + t< 0) == (x > (- 1/c)*t))" +proof- + assume H: "c < 0" + have "c*x + t< 0 = (c*x < -t)" by (subst less_iff_diff_less_0 [of "c*x" "-t"], simp) + also have "\ = (-t/c < x)" by (simp only: neg_divide_less_eq[OF H] ring_simps) + also have "\ = ((- 1/c)*t < x)" by simp + finally show "(c*x + t < 0) == (x > (- 1/c)*t)" by simp +qed + +lemma pos_prod_sum_lt:"(c\'a\ordered_field) > 0 \ ((c*x + t < 0) == (x < (- 1/c)*t))" +proof- + assume H: "c > 0" + have "c*x + t< 0 = (c*x < -t)" by (subst less_iff_diff_less_0 [of "c*x" "-t"], simp) + also have "\ = (-t/c > x)" by (simp only: pos_less_divide_eq[OF H] ring_simps) + also have "\ = ((- 1/c)*t > x)" by simp + finally show "(c*x + t < 0) == (x < (- 1/c)*t)" by simp +qed + +lemma sum_lt:"((x::'a::pordered_ab_group_add) + t < 0) == (x < - t)" + using less_diff_eq[where a= x and b=t and c=0] by simp + +lemma neg_prod_le:"(c\'a\ordered_field) < 0 \ ((c*x <= 0) == (x >= 0))" +proof- + assume H: "c < 0" + have "c*x <= 0 = (0/c <= x)" by (simp only: neg_divide_le_eq[OF H] ring_simps) + also have "\ = (0 <= x)" by simp + finally show "(c*x <= 0) == (x >= 0)" by simp +qed + +lemma pos_prod_le:"(c\'a\ordered_field) > 0 \ ((c*x <= 0) == (x <= 0))" +proof- + assume H: "c > 0" + hence "c*x <= 0 = (0/c >= x)" by (simp only: pos_le_divide_eq[OF H] ring_simps) + also have "\ = (0 >= x)" by simp + finally show "(c*x <= 0) == (x <= 0)" by simp +qed + +lemma neg_prod_sum_le: "(c\'a\ordered_field) < 0 \ ((c*x + t <= 0) == (x >= (- 1/c)*t))" +proof- + assume H: "c < 0" + have "c*x + t <= 0 = (c*x <= -t)" by (subst le_iff_diff_le_0 [of "c*x" "-t"], simp) + also have "\ = (-t/c <= x)" by (simp only: neg_divide_le_eq[OF H] ring_simps) + also have "\ = ((- 1/c)*t <= x)" by simp + finally show "(c*x + t <= 0) == (x >= (- 1/c)*t)" by simp +qed + +lemma pos_prod_sum_le:"(c\'a\ordered_field) > 0 \ ((c*x + t <= 0) == (x <= (- 1/c)*t))" +proof- + assume H: "c > 0" + have "c*x + t <= 0 = (c*x <= -t)" by (subst le_iff_diff_le_0 [of "c*x" "-t"], simp) + also have "\ = (-t/c >= x)" by (simp only: pos_le_divide_eq[OF H] ring_simps) + also have "\ = ((- 1/c)*t >= x)" by simp + finally show "(c*x + t <= 0) == (x <= (- 1/c)*t)" by simp +qed + +lemma sum_le:"((x::'a::pordered_ab_group_add) + t <= 0) == (x <= - t)" + using le_diff_eq[where a= x and b=t and c=0] by simp + +lemma nz_prod_eq:"(c\'a\ordered_field) \ 0 \ ((c*x = 0) == (x = 0))" by simp +lemma nz_prod_sum_eq: "(c\'a\ordered_field) \ 0 \ ((c*x + t = 0) == (x = (- 1/c)*t))" +proof- + assume H: "c \ 0" + have "c*x + t = 0 = (c*x = -t)" by (subst eq_iff_diff_eq_0 [of "c*x" "-t"], simp) + also have "\ = (x = -t/c)" by (simp only: nonzero_eq_divide_eq[OF H] ring_simps) + finally show "(c*x + t = 0) == (x = (- 1/c)*t)" by simp +qed +lemma sum_eq:"((x::'a::pordered_ab_group_add) + t = 0) == (x = - t)" + using eq_diff_eq[where a= x and b=t and c=0] by simp + + +interpretation class_ordered_field_dense_linear_order: constr_dense_linear_order + ["op <=" "op <" + "\ x y. 1/2 * ((x::'a::{ordered_field,recpower,number_ring}) + y)"] +proof (unfold_locales, dlo, dlo, auto) + fix x y::'a assume lt: "x < y" + from less_half_sum[OF lt] show "x < (x + y) /2" by simp +next + fix x y::'a assume lt: "x < y" + from gt_half_sum[OF lt] show "(x + y) /2 < y" by simp +qed + +declaration{* +let +fun earlier [] x y = false + | earlier (h::t) x y = + if h aconvc y then false else if h aconvc x then true else earlier t x y; + +fun dest_frac ct = case term_of ct of + Const (@{const_name "HOL.divide"},_) $ a $ b=> + Rat.rat_of_quotient (snd (HOLogic.dest_number a), snd (HOLogic.dest_number b)) + | t => Rat.rat_of_int (snd (HOLogic.dest_number t)) + +fun mk_frac phi cT x = + let val (a, b) = Rat.quotient_of_rat x + in if b = 1 then Numeral.mk_cnumber cT a + else Thm.capply + (Thm.capply (Drule.cterm_rule (instantiate' [SOME cT] []) @{cpat "op /"}) + (Numeral.mk_cnumber cT a)) + (Numeral.mk_cnumber cT b) + end + +fun whatis x ct = case term_of ct of + Const(@{const_name "HOL.plus"}, _)$(Const(@{const_name "HOL.times"},_)$_$y)$_ => + if y aconv term_of x then ("c*x+t",[(funpow 2 Thm.dest_arg1) ct, Thm.dest_arg ct]) + else ("Nox",[]) +| Const(@{const_name "HOL.plus"}, _)$y$_ => + if y aconv term_of x then ("x+t",[Thm.dest_arg ct]) + else ("Nox",[]) +| Const(@{const_name "HOL.times"}, _)$_$y => + if y aconv term_of x then ("c*x",[Thm.dest_arg1 ct]) + else ("Nox",[]) +| t => if t aconv term_of x then ("x",[]) else ("Nox",[]); + +fun xnormalize_conv ctxt [] ct = reflexive ct +| xnormalize_conv ctxt (vs as (x::_)) ct = + case term_of ct of + Const(@{const_name HOL.less},_)$_$Const(@{const_name "HOL.zero"},_) => + (case whatis x (Thm.dest_arg1 ct) of + ("c*x+t",[c,t]) => + let + val cr = dest_frac c + val clt = Thm.dest_fun2 ct + val cz = Thm.dest_arg ct + val neg = cr + let + val T = ctyp_of_term x + val th = instantiate' [SOME T] [SOME x, SOME t] @{thm "sum_lt"} + val rth = Conv.fconv_rule (Conv.arg_conv (Conv.binop_conv + (Normalizer.semiring_normalize_ord_conv ctxt (earlier vs)))) th + in rth end + | ("c*x",[c]) => + let + val cr = dest_frac c + val clt = Thm.dest_fun2 ct + val cz = Thm.dest_arg ct + val neg = cr reflexive ct) + + +| Const(@{const_name HOL.less_eq},_)$_$Const(@{const_name "HOL.zero"},_) => + (case whatis x (Thm.dest_arg1 ct) of + ("c*x+t",[c,t]) => + let + val T = ctyp_of_term x + val cr = dest_frac c + val clt = Drule.cterm_rule (instantiate' [SOME T] []) @{cpat "op <"} + val cz = Thm.dest_arg ct + val neg = cr + let + val T = ctyp_of_term x + val th = instantiate' [SOME T] [SOME x, SOME t] @{thm "sum_le"} + val rth = Conv.fconv_rule (Conv.arg_conv (Conv.binop_conv + (Normalizer.semiring_normalize_ord_conv ctxt (earlier vs)))) th + in rth end + | ("c*x",[c]) => + let + val T = ctyp_of_term x + val cr = dest_frac c + val clt = Drule.cterm_rule (instantiate' [SOME T] []) @{cpat "op <"} + val cz = Thm.dest_arg ct + val neg = cr reflexive ct) + +| Const("op =",_)$_$Const(@{const_name "HOL.zero"},_) => + (case whatis x (Thm.dest_arg1 ct) of + ("c*x+t",[c,t]) => + let + val T = ctyp_of_term x + val cr = dest_frac c + val ceq = Thm.dest_fun2 ct + val cz = Thm.dest_arg ct + val cthp = Simplifier.rewrite (local_simpset_of ctxt) + (Thm.capply @{cterm "Trueprop"} + (Thm.capply @{cterm "Not"} (Thm.capply (Thm.capply ceq c) cz))) + val cth = equal_elim (symmetric cthp) TrueI + val th = implies_elim + (instantiate' [SOME T] (map SOME [c,x,t]) @{thm nz_prod_sum_eq}) cth + val rth = Conv.fconv_rule (Conv.arg_conv (Conv.binop_conv + (Normalizer.semiring_normalize_ord_conv ctxt (earlier vs)))) th + in rth end + | ("x+t",[t]) => + let + val T = ctyp_of_term x + val th = instantiate' [SOME T] [SOME x, SOME t] @{thm "sum_eq"} + val rth = Conv.fconv_rule (Conv.arg_conv (Conv.binop_conv + (Normalizer.semiring_normalize_ord_conv ctxt (earlier vs)))) th + in rth end + | ("c*x",[c]) => + let + val T = ctyp_of_term x + val cr = dest_frac c + val ceq = Thm.dest_fun2 ct + val cz = Thm.dest_arg ct + val cthp = Simplifier.rewrite (local_simpset_of ctxt) + (Thm.capply @{cterm "Trueprop"} + (Thm.capply @{cterm "Not"} (Thm.capply (Thm.capply ceq c) cz))) + val cth = equal_elim (symmetric cthp) TrueI + val rth = implies_elim + (instantiate' [SOME T] (map SOME [c,x]) @{thm nz_prod_eq}) cth + in rth end + | _ => reflexive ct); + +local + val less_iff_diff_less_0 = mk_meta_eq @{thm "less_iff_diff_less_0"} + val le_iff_diff_le_0 = mk_meta_eq @{thm "le_iff_diff_le_0"} + val eq_iff_diff_eq_0 = mk_meta_eq @{thm "eq_iff_diff_eq_0"} +in +fun field_isolate_conv phi ctxt vs ct = case term_of ct of + Const(@{const_name HOL.less},_)$a$b => + let val (ca,cb) = Thm.dest_binop ct + val T = ctyp_of_term ca + val th = instantiate' [SOME T] [SOME ca, SOME cb] less_iff_diff_less_0 + val nth = Conv.fconv_rule + (Conv.arg_conv (Conv.arg1_conv + (Normalizer.semiring_normalize_ord_conv @{context} (earlier vs)))) th + val rth = transitive nth (xnormalize_conv ctxt vs (Thm.rhs_of nth)) + in rth end +| Const(@{const_name HOL.less_eq},_)$a$b => + let val (ca,cb) = Thm.dest_binop ct + val T = ctyp_of_term ca + val th = instantiate' [SOME T] [SOME ca, SOME cb] le_iff_diff_le_0 + val nth = Conv.fconv_rule + (Conv.arg_conv (Conv.arg1_conv + (Normalizer.semiring_normalize_ord_conv @{context} (earlier vs)))) th + val rth = transitive nth (xnormalize_conv ctxt vs (Thm.rhs_of nth)) + in rth end + +| Const("op =",_)$a$b => + let val (ca,cb) = Thm.dest_binop ct + val T = ctyp_of_term ca + val th = instantiate' [SOME T] [SOME ca, SOME cb] eq_iff_diff_eq_0 + val nth = Conv.fconv_rule + (Conv.arg_conv (Conv.arg1_conv + (Normalizer.semiring_normalize_ord_conv @{context} (earlier vs)))) th + val rth = transitive nth (xnormalize_conv ctxt vs (Thm.rhs_of nth)) + in rth end +| @{term "Not"} $(Const("op =",_)$a$b) => Conv.arg_conv (field_isolate_conv phi ctxt vs) ct +| _ => reflexive ct +end; + +fun classfield_whatis phi = + let + fun h x t = + case term_of t of + Const("op =", _)$y$z => if term_of x aconv y then Ferrante_Rackoff_Data.Eq + else Ferrante_Rackoff_Data.Nox + | @{term "Not"}$(Const("op =", _)$y$z) => if term_of x aconv y then Ferrante_Rackoff_Data.NEq + else Ferrante_Rackoff_Data.Nox + | Const(@{const_name HOL.less},_)$y$z => + if term_of x aconv y then Ferrante_Rackoff_Data.Lt + else if term_of x aconv z then Ferrante_Rackoff_Data.Gt + else Ferrante_Rackoff_Data.Nox + | Const (@{const_name HOL.less_eq},_)$y$z => + if term_of x aconv y then Ferrante_Rackoff_Data.Le + else if term_of x aconv z then Ferrante_Rackoff_Data.Ge + else Ferrante_Rackoff_Data.Nox + | _ => Ferrante_Rackoff_Data.Nox + in h end; +fun class_field_ss phi = + HOL_basic_ss addsimps ([@{thm "linorder_not_less"}, @{thm "linorder_not_le"}]) + addsplits [@{thm "abs_split"},@{thm "split_max"}, @{thm "split_min"}] + +in +Ferrante_Rackoff_Data.funs @{thm "class_ordered_field_dense_linear_order.ferrack_axiom"} + {isolate_conv = field_isolate_conv, whatis = classfield_whatis, simpset = class_field_ss} +end +*} + + +end