# HG changeset patch # User lcp # Date 787486669 -3600 # Node ID 354a56e923ffaac770f1f2f25bc4f93124f5bf29 # Parent 4c10e8532d43984f7b35d343d5e5226a06d57922 updated comment; renamed converse_of_Un to converse_Un diff -r 4c10e8532d43 -r 354a56e923ff src/ZF/Perm.ML --- a/src/ZF/Perm.ML Thu Dec 15 11:08:22 1994 +0100 +++ b/src/ZF/Perm.ML Thu Dec 15 11:17:49 1994 +0100 @@ -223,7 +223,7 @@ (** Composition of two relations **) -(*The inductive definition package could derive these theorems for R o S*) +(*The inductive definition package could derive these theorems for (r O s)*) goalw Perm.thy [comp_def] "!!r s. [| :s; :r |] ==> : r O s"; by (fast_tac ZF_cs 1); @@ -444,7 +444,7 @@ by (DEPTH_SOLVE_1 (resolve_tac [Un_least,converse_mono, Un_upper1,Un_upper2] 2)); by (fast_tac ZF_cs 1); -qed "converse_of_Un"; +qed "converse_Un"; goalw Perm.thy [surj_def] "!!f g. [| f: surj(A,B); g: surj(C,D); A Int C = 0 |] ==> \ @@ -461,7 +461,7 @@ "!!f g. [| f: bij(A,B); g: bij(C,D); A Int C = 0; B Int D = 0 |] ==> \ \ (f Un g) : bij(A Un C, B Un D)"; by (rtac invertible_imp_bijective 1); -by (rtac (converse_of_Un RS ssubst) 1); +by (rtac (converse_Un RS ssubst) 1); by (REPEAT (ares_tac [fun_disjoint_Un, bij_is_fun, bij_converse_bij] 1)); qed "bij_disjoint_Un";