# HG changeset patch # User wenzelm # Date 1445269536 -7200 # Node ID 3590367b0ce97d26a8be407048075886f8ff1eeb # Parent 0cc8016cc1959860cb1d7a497b4a8baa6a46f088 tuned document; diff -r 0cc8016cc195 -r 3590367b0ce9 src/HOL/Hahn_Banach/Function_Norm.thy --- a/src/HOL/Hahn_Banach/Function_Norm.thy Mon Oct 19 17:19:53 2015 +0200 +++ b/src/HOL/Hahn_Banach/Function_Norm.thy Mon Oct 19 17:45:36 2015 +0200 @@ -12,7 +12,7 @@ text \ A linear form @{text f} on a normed vector space @{text "(V, \\\)"} - is \emph{continuous}, iff it is bounded, i.e. + is \<^emph>\continuous\, iff it is bounded, i.e. \begin{center} @{text "\c \ R. \x \ V. \f x\ \ c \ \x\"} \end{center} @@ -46,7 +46,7 @@ \begin{center} @{text "\x \ V. \f x\ \ c \ \x\"} \end{center} - is called the \emph{norm} of @{text f}. + is called the \<^emph>\norm\ of @{text f}. For non-trivial vector spaces @{text "V \ {0}"} the norm can be defined as @@ -194,7 +194,8 @@ qed text \ - \medskip The fundamental property of function norms is: + \<^medskip> + The fundamental property of function norms is: \begin{center} @{text "\f x\ \ \f\ \ \x\"} \end{center} @@ -235,7 +236,8 @@ qed text \ - \medskip The function norm is the least positive real number for + \<^medskip> + The function norm is the least positive real number for which the following inequation holds: \begin{center} @{text "\f x\ \ c \ \x\"} diff -r 0cc8016cc195 -r 3590367b0ce9 src/HOL/Hahn_Banach/Function_Order.thy --- a/src/HOL/Hahn_Banach/Function_Order.thy Mon Oct 19 17:19:53 2015 +0200 +++ b/src/HOL/Hahn_Banach/Function_Order.thy Mon Oct 19 17:45:36 2015 +0200 @@ -11,7 +11,7 @@ subsection \The graph of a function\ text \ - We define the \emph{graph} of a (real) function @{text f} with + We define the \<^emph>\graph\ of a (real) function @{text f} with domain @{text F} as the set \begin{center} @{text "{(x, f x). x \ F}"} diff -r 0cc8016cc195 -r 3590367b0ce9 src/HOL/Hahn_Banach/Hahn_Banach.thy --- a/src/HOL/Hahn_Banach/Hahn_Banach.thy Mon Oct 19 17:19:53 2015 +0200 +++ b/src/HOL/Hahn_Banach/Hahn_Banach.thy Mon Oct 19 17:45:36 2015 +0200 @@ -15,42 +15,36 @@ subsection \The Hahn-Banach Theorem for vector spaces\ +paragraph \Hahn-Banach Theorem.\ text \ - \textbf{Hahn-Banach Theorem.} Let @{text F} be a subspace of a real - vector space @{text E}, let @{text p} be a semi-norm on @{text E}, - and @{text f} be a linear form defined on @{text F} such that @{text - f} is bounded by @{text p}, i.e. @{text "\x \ F. f x \ p x"}. Then - @{text f} can be extended to a linear form @{text h} on @{text E} - such that @{text h} is norm-preserving, i.e. @{text h} is also - bounded by @{text p}. + Let @{text F} be a subspace of a real vector space @{text E}, let @{text + p} be a semi-norm on @{text E}, and @{text f} be a linear form defined on + @{text F} such that @{text f} is bounded by @{text p}, i.e. @{text "\x \ + F. f x \ p x"}. Then @{text f} can be extended to a linear form @{text h} + on @{text E} such that @{text h} is norm-preserving, i.e. @{text h} is + also bounded by @{text p}. +\ - \bigskip - \textbf{Proof Sketch.} - \begin{enumerate} - - \item Define @{text M} as the set of norm-preserving extensions of +paragraph \Proof Sketch.\ +text \ + \<^enum> Define @{text M} as the set of norm-preserving extensions of @{text f} to subspaces of @{text E}. The linear forms in @{text M} are ordered by domain extension. - \item We show that every non-empty chain in @{text M} has an upper + \<^enum> We show that every non-empty chain in @{text M} has an upper bound in @{text M}. - \item With Zorn's Lemma we conclude that there is a maximal function + \<^enum> With Zorn's Lemma we conclude that there is a maximal function @{text g} in @{text M}. - \item The domain @{text H} of @{text g} is the whole space @{text + \<^enum> The domain @{text H} of @{text g} is the whole space @{text E}, as shown by classical contradiction: - \begin{itemize} + \<^item> Assuming @{text g} is not defined on whole @{text E}, it can + still be extended in a norm-preserving way to a super-space @{text + H'} of @{text H}. - \item Assuming @{text g} is not defined on whole @{text E}, it can - still be extended in a norm-preserving way to a super-space @{text - H'} of @{text H}. - - \item Thus @{text g} can not be maximal. Contradiction! - - \end{itemize} - \end{enumerate} + \<^item> Thus @{text g} can not be maximal. Contradiction! \ theorem Hahn_Banach: @@ -60,7 +54,7 @@ shows "\h. linearform E h \ (\x \ F. h x = f x) \ (\x \ E. h x \ p x)" -- \Let @{text E} be a vector space, @{text F} a subspace of @{text E}, @{text p} a seminorm on @{text E},\ -- \and @{text f} a linear form on @{text F} such that @{text f} is bounded by @{text p},\ - -- \then @{text f} can be extended to a linear form @{text h} on @{text E} in a norm-preserving way. \skp\ + -- \then @{text f} can be extended to a linear form @{text h} on @{text E} in a norm-preserving way. \<^smallskip>\ proof - interpret vectorspace E by fact interpret subspace F E by fact @@ -104,7 +98,7 @@ qed } then have "\g \ M. \x \ M. g \ x \ x = g" - -- \With Zorn's Lemma we can conclude that there is a maximal element in @{text M}. \skp\ + -- \With Zorn's Lemma we can conclude that there is a maximal element in @{text M}. \<^smallskip>\ proof (rule Zorn's_Lemma) -- \We show that @{text M} is non-empty:\ show "graph F f \ M" @@ -127,16 +121,16 @@ and hp: "\x \ H. h x \ p x" unfolding M_def .. -- \@{text g} is a norm-preserving extension of @{text f}, in other words:\ -- \@{text g} is the graph of some linear form @{text h} defined on a subspace @{text H} of @{text E},\ - -- \and @{text h} is an extension of @{text f} that is again bounded by @{text p}. \skp\ + -- \and @{text h} is an extension of @{text f} that is again bounded by @{text p}. \<^smallskip>\ from HE E have H: "vectorspace H" by (rule subspace.vectorspace) have HE_eq: "H = E" - -- \We show that @{text h} is defined on whole @{text E} by classical contradiction. \skp\ + -- \We show that @{text h} is defined on whole @{text E} by classical contradiction. \<^smallskip>\ proof (rule classical) assume neq: "H \ E" -- \Assume @{text h} is not defined on whole @{text E}. Then show that @{text h} can be extended\ - -- \in a norm-preserving way to a function @{text h'} with the graph @{text g'}. \skp\ + -- \in a norm-preserving way to a function @{text h'} with the graph @{text g'}. \<^smallskip>\ have "\g' \ M. g \ g' \ g \ g'" proof - from HE have "H \ E" .. @@ -152,7 +146,7 @@ qed def H' \ "H + lin x'" - -- \Define @{text H'} as the direct sum of @{text H} and the linear closure of @{text x'}. \skp\ + -- \Define @{text H'} as the direct sum of @{text H} and the linear closure of @{text x'}. \<^smallskip>\ have HH': "H \ H'" proof (unfold H'_def) from x'E have "vectorspace (lin x')" .. @@ -164,7 +158,7 @@ \ xi \ p (y + x') - h y" -- \Pick a real number @{text \} that fulfills certain inequations; this will\ -- \be used to establish that @{text h'} is a norm-preserving extension of @{text h}. - \label{ex-xi-use}\skp\ + \label{ex-xi-use}\<^smallskip>\ proof - from H have "\xi. \y \ H. - p (y + x') - h y \ xi \ xi \ p (y + x') - h y" @@ -191,10 +185,10 @@ def h' \ "\x. let (y, a) = SOME (y, a). x = y + a \ x' \ y \ H in h y + a * xi" - -- \Define the extension @{text h'} of @{text h} to @{text H'} using @{text \}. \skp\ + -- \Define the extension @{text h'} of @{text h} to @{text H'} using @{text \}. \<^smallskip>\ have "g \ graph H' h' \ g \ graph H' h'" - -- \@{text h'} is an extension of @{text h} \dots \skp\ + -- \@{text h'} is an extension of @{text h} \dots \<^smallskip>\ proof show "g \ graph H' h'" proof - @@ -231,7 +225,7 @@ qed qed moreover have "graph H' h' \ M" - -- \and @{text h'} is norm-preserving. \skp\ + -- \and @{text h'} is norm-preserving. \<^smallskip>\ proof (unfold M_def) show "graph H' h' \ norm_pres_extensions E p F f" proof (rule norm_pres_extensionI2) @@ -279,7 +273,7 @@ ultimately show ?thesis .. qed then have "\ (\x \ M. g \ x \ g = x)" by simp - -- \So the graph @{text g} of @{text h} cannot be maximal. Contradiction! \skp\ + -- \So the graph @{text g} of @{text h} cannot be maximal. Contradiction! \<^smallskip>\ with gx show "H = E" by contradiction qed diff -r 0cc8016cc195 -r 3590367b0ce9 src/HOL/Hahn_Banach/Hahn_Banach_Ext_Lemmas.thy --- a/src/HOL/Hahn_Banach/Hahn_Banach_Ext_Lemmas.thy Mon Oct 19 17:19:53 2015 +0200 +++ b/src/HOL/Hahn_Banach/Hahn_Banach_Ext_Lemmas.thy Mon Oct 19 17:45:36 2015 +0200 @@ -24,7 +24,8 @@ Subsequently we show some properties of this extension @{text h'} of @{text h}. - \medskip This lemma will be used to show the existence of a linear + \<^medskip> + This lemma will be used to show the existence of a linear extension of @{text f} (see page \pageref{ex-xi-use}). It is a consequence of the completeness of @{text \}. To show \begin{center} @@ -84,7 +85,8 @@ qed text \ - \medskip The function @{text h'} is defined as a @{text "h' x = h y + \<^medskip> + The function @{text h'} is defined as a @{text "h' x = h y + a \ \"} where @{text "x = y + a \ \"} is a linear extension of @{text h} to @{text H'}. \ @@ -190,7 +192,9 @@ qed qed -text \\medskip The linear extension @{text h'} of @{text h} +text \ + \<^medskip> + The linear extension @{text h'} of @{text h} is bounded by the seminorm @{text p}.\ lemma h'_norm_pres: diff -r 0cc8016cc195 -r 3590367b0ce9 src/HOL/Hahn_Banach/Hahn_Banach_Sup_Lemmas.thy --- a/src/HOL/Hahn_Banach/Hahn_Banach_Sup_Lemmas.thy Mon Oct 19 17:19:53 2015 +0200 +++ b/src/HOL/Hahn_Banach/Hahn_Banach_Sup_Lemmas.thy Mon Oct 19 17:45:36 2015 +0200 @@ -18,11 +18,13 @@ graph H h"}. We will show some properties about the limit function @{text h}, i.e.\ the supremum of the chain @{text c}. - \medskip Let @{text c} be a chain of norm-preserving extensions of + \<^medskip> + Let @{text c} be a chain of norm-preserving extensions of the function @{text f} and let @{text "graph H h"} be the supremum of @{text c}. Every element in @{text H} is member of one of the elements of the chain. \ + lemmas [dest?] = chainsD lemmas chainsE2 [elim?] = chainsD2 [elim_format] @@ -54,7 +56,8 @@ qed text \ - \medskip Let @{text c} be a chain of norm-preserving extensions of + \<^medskip> + Let @{text c} be a chain of norm-preserving extensions of the function @{text f} and let @{text "graph H h"} be the supremum of @{text c}. Every element in the domain @{text H} of the supremum function is member of the domain @{text H'} of some function @{text @@ -82,7 +85,8 @@ qed text \ - \medskip Any two elements @{text x} and @{text y} in the domain + \<^medskip> + Any two elements @{text x} and @{text y} in the domain @{text H} of the supremum function @{text h} are both in the domain @{text H'} of some function @{text h'}, such that @{text h} extends @{text h'}. @@ -154,7 +158,8 @@ qed text \ - \medskip The relation induced by the graph of the supremum of a + \<^medskip> + The relation induced by the graph of the supremum of a chain @{text c} is definite, i.~e.~t is the graph of a function. \ @@ -204,7 +209,8 @@ qed text \ - \medskip The limit function @{text h} is linear. Every element + \<^medskip> + The limit function @{text h} is linear. Every element @{text x} in the domain of @{text h} is in the domain of a function @{text h'} in the chain of norm preserving extensions. Furthermore, @{text h} is an extension of @{text h'} so the function values of @@ -259,7 +265,8 @@ qed text \ - \medskip The limit of a non-empty chain of norm preserving + \<^medskip> + The limit of a non-empty chain of norm preserving extensions of @{text f} is an extension of @{text f}, since every element of the chain is an extension of @{text f} and the supremum is an extension for every element of the chain. @@ -285,7 +292,8 @@ qed text \ - \medskip The domain @{text H} of the limit function is a superspace + \<^medskip> + The domain @{text H} of the limit function is a superspace of @{text F}, since @{text F} is a subset of @{text H}. The existence of the @{text 0} element in @{text F} and the closure properties follow from the fact that @{text F} is a vector space. @@ -310,7 +318,8 @@ qed text \ - \medskip The domain @{text H} of the limit function is a subspace of + \<^medskip> + The domain @{text H} of the limit function is a subspace of @{text E}. \ @@ -366,7 +375,8 @@ qed text \ - \medskip The limit function is bounded by the norm @{text p} as + \<^medskip> + The limit function is bounded by the norm @{text p} as well, since all elements in the chain are bounded by @{text p}. \ @@ -387,7 +397,8 @@ qed text \ - \medskip The following lemma is a property of linear forms on real + \<^medskip> + The following lemma is a property of linear forms on real vector spaces. It will be used for the lemma @{text abs_Hahn_Banach} (see page \pageref{abs-Hahn_Banach}). \label{abs-ineq-iff} For real vector spaces the following inequations are equivalent: diff -r 0cc8016cc195 -r 3590367b0ce9 src/HOL/Hahn_Banach/Linearform.thy --- a/src/HOL/Hahn_Banach/Linearform.thy Mon Oct 19 17:19:53 2015 +0200 +++ b/src/HOL/Hahn_Banach/Linearform.thy Mon Oct 19 17:45:36 2015 +0200 @@ -9,7 +9,7 @@ begin text \ - A \emph{linear form} is a function on a vector space into the reals + A \<^emph>\linear form\ is a function on a vector space into the reals that is additive and multiplicative. \ diff -r 0cc8016cc195 -r 3590367b0ce9 src/HOL/Hahn_Banach/Normed_Space.thy --- a/src/HOL/Hahn_Banach/Normed_Space.thy Mon Oct 19 17:19:53 2015 +0200 +++ b/src/HOL/Hahn_Banach/Normed_Space.thy Mon Oct 19 17:45:36 2015 +0200 @@ -11,7 +11,7 @@ subsection \Quasinorms\ text \ - A \emph{seminorm} @{text "\\\"} is a function on a real vector space + A \<^emph>\seminorm\ @{text "\\\"} is a function on a real vector space into the reals that has the following properties: it is positive definite, absolute homogeneous and subadditive. \ @@ -57,7 +57,7 @@ subsection \Norms\ text \ - A \emph{norm} @{text "\\\"} is a seminorm that maps only the + A \<^emph>\norm\ @{text "\\\"} is a seminorm that maps only the @{text 0} vector to @{text 0}. \ @@ -68,8 +68,8 @@ subsection \Normed vector spaces\ text \ - A vector space together with a norm is called a \emph{normed - space}. + A vector space together with a norm is called a \<^emph>\normed + space\. \ locale normed_vectorspace = vectorspace + norm diff -r 0cc8016cc195 -r 3590367b0ce9 src/HOL/Hahn_Banach/Subspace.thy --- a/src/HOL/Hahn_Banach/Subspace.thy Mon Oct 19 17:19:53 2015 +0200 +++ b/src/HOL/Hahn_Banach/Subspace.thy Mon Oct 19 17:45:36 2015 +0200 @@ -12,7 +12,7 @@ text \ A non-empty subset @{text U} of a vector space @{text V} is a - \emph{subspace} of @{text V}, iff @{text U} is closed under addition + \<^emph>\subspace\ of @{text V}, iff @{text U} is closed under addition and scalar multiplication. \ @@ -50,7 +50,8 @@ qed text \ - \medskip Similar as for linear spaces, the existence of the zero + \<^medskip> + Similar as for linear spaces, the existence of the zero element in every subspace follows from the non-emptiness of the carrier set and by vector space laws. \ @@ -76,7 +77,7 @@ from x show ?thesis by (simp add: negate_eq1) qed -text \\medskip Further derived laws: every subspace is a vector space.\ +text \\<^medskip> Further derived laws: every subspace is a vector space.\ lemma (in subspace) vectorspace [iff]: assumes "vectorspace V" @@ -139,7 +140,7 @@ subsection \Linear closure\ text \ - The \emph{linear closure} of a vector @{text x} is the set of all + The \<^emph>\linear closure\ of a vector @{text x} is the set of all scalar multiples of @{text x}. \ @@ -226,7 +227,7 @@ subsection \Sum of two vectorspaces\ text \ - The \emph{sum} of two vectorspaces @{text U} and @{text V} is the + The \<^emph>\sum\ of two vectorspaces @{text U} and @{text V} is the set of all sums of elements from @{text U} and @{text V}. \ @@ -328,7 +329,7 @@ subsection \Direct sums\ text \ - The sum of @{text U} and @{text V} is called \emph{direct}, iff the + The sum of @{text U} and @{text V} is called \<^emph>\direct\, iff the zero element is the only common element of @{text U} and @{text V}. For every element @{text x} of the direct sum of @{text U} and @{text V} the decomposition in @{text "x = u + v"} with diff -r 0cc8016cc195 -r 3590367b0ce9 src/HOL/Hahn_Banach/Vector_Space.thy --- a/src/HOL/Hahn_Banach/Vector_Space.thy Mon Oct 19 17:19:53 2015 +0200 +++ b/src/HOL/Hahn_Banach/Vector_Space.thy Mon Oct 19 17:45:36 2015 +0200 @@ -23,7 +23,7 @@ subsection \Vector space laws\ text \ - A \emph{vector space} is a non-empty set @{text V} of elements from + A \<^emph>\vector space\ is a non-empty set @{text V} of elements from @{typ 'a} with the following vector space laws: The set @{text V} is closed under addition and scalar multiplication, addition is associative and commutative; @{text "- x"} is the inverse of @{text @@ -122,7 +122,7 @@ diff_mult_distrib1 diff_mult_distrib2 -text \\medskip Further derived laws:\ +text \\<^medskip> Further derived laws:\ lemma mult_zero_left [simp]: "x \ V \ 0 \ x = 0" proof - diff -r 0cc8016cc195 -r 3590367b0ce9 src/HOL/Hahn_Banach/document/root.tex --- a/src/HOL/Hahn_Banach/document/root.tex Mon Oct 19 17:19:53 2015 +0200 +++ b/src/HOL/Hahn_Banach/document/root.tex Mon Oct 19 17:45:36 2015 +0200 @@ -8,7 +8,6 @@ \urlstyle{rm} \newcommand{\isasymsup}{\isamath{\sup\,}} -\newcommand{\skp}{\smallskip} \begin{document}