# HG changeset patch # User nipkow # Date 1698387376 -7200 # Node ID 35b2282fbc7737056d66146538dd623218981087 # Parent 98e164c3059f6aef0f2a6f439204ad576b6effd4 added lemma diff -r 98e164c3059f -r 35b2282fbc77 src/HOL/Library/NList.thy --- a/src/HOL/Library/NList.thy Thu Oct 26 20:41:42 2023 +0200 +++ b/src/HOL/Library/NList.thy Fri Oct 27 08:16:16 2023 +0200 @@ -44,6 +44,9 @@ lemma Cons_in_nlists_Suc [iff]: "(x#xs \ nlists (Suc n) A) \ (x\A \ xs \ nlists n A)" unfolding nlists_def by (auto) +lemma nlists_Suc: "nlists (Suc n) A = (\a\A. (#) a ` nlists n A)" +by(auto simp: set_eq_iff image_iff in_nlists_Suc_iff) + lemma nlists_not_empty: "A\{} \ \xs. xs \ nlists n A" by (induct "n") (auto simp: in_nlists_Suc_iff)