# HG changeset patch # User huffman # Date 1333489764 -7200 # Node ID b4490e1a07323eb926b8810dabea60aecdb3d6bc # Parent ec6187036495467db663240db281598395df8eef# Parent 365521737b6aa0c792bb5118a4736caf1021ebce merged diff -r 365521737b6a -r b4490e1a0732 src/HOL/IsaMakefile --- a/src/HOL/IsaMakefile Tue Apr 03 21:39:28 2012 +0200 +++ b/src/HOL/IsaMakefile Tue Apr 03 23:49:24 2012 +0200 @@ -306,6 +306,7 @@ Sledgehammer.thy \ SMT.thy \ String.thy \ + Transfer.thy \ Typerep.thy \ $(SRC)/Provers/Arith/assoc_fold.ML \ $(SRC)/Provers/Arith/cancel_numeral_factor.ML \ @@ -316,6 +317,7 @@ Tools/code_evaluation.ML \ Tools/groebner.ML \ Tools/int_arith.ML \ + Tools/legacy_transfer.ML \ Tools/Lifting/lifting_def.ML \ Tools/Lifting/lifting_info.ML \ Tools/Lifting/lifting_term.ML \ diff -r 365521737b6a -r b4490e1a0732 src/HOL/Lifting.thy --- a/src/HOL/Lifting.thy Tue Apr 03 21:39:28 2012 +0200 +++ b/src/HOL/Lifting.thy Tue Apr 03 23:49:24 2012 +0200 @@ -6,7 +6,7 @@ header {* Lifting package *} theory Lifting -imports Plain Equiv_Relations +imports Plain Equiv_Relations Transfer keywords "print_quotmaps" "print_quotients" :: diag and "lift_definition" :: thy_goal and @@ -18,7 +18,7 @@ ("Tools/Lifting/lifting_setup.ML") begin -subsection {* Function map and function relation *} +subsection {* Function map *} notation map_fun (infixr "--->" 55) @@ -26,29 +26,6 @@ "(id ---> id) = id" by (simp add: fun_eq_iff) -definition - fun_rel :: "('a \ 'c \ bool) \ ('b \ 'd \ bool) \ ('a \ 'b) \ ('c \ 'd) \ bool" (infixr "===>" 55) -where - "fun_rel R1 R2 = (\f g. \x y. R1 x y \ R2 (f x) (g y))" - -lemma fun_relI [intro]: - assumes "\x y. R1 x y \ R2 (f x) (g y)" - shows "(R1 ===> R2) f g" - using assms by (simp add: fun_rel_def) - -lemma fun_relE: - assumes "(R1 ===> R2) f g" and "R1 x y" - obtains "R2 (f x) (g y)" - using assms by (simp add: fun_rel_def) - -lemma fun_rel_eq: - shows "((op =) ===> (op =)) = (op =)" - by (auto simp add: fun_eq_iff elim: fun_relE) - -lemma fun_rel_eq_rel: - shows "((op =) ===> R) = (\f g. \x. R (f x) (g x))" - by (simp add: fun_rel_def) - subsection {* Quotient Predicate *} definition diff -r 365521737b6a -r b4490e1a0732 src/HOL/Nat_Transfer.thy --- a/src/HOL/Nat_Transfer.thy Tue Apr 03 21:39:28 2012 +0200 +++ b/src/HOL/Nat_Transfer.thy Tue Apr 03 23:49:24 2012 +0200 @@ -5,7 +5,7 @@ theory Nat_Transfer imports Int -uses ("Tools/transfer.ML") +uses ("Tools/legacy_transfer.ML") begin subsection {* Generic transfer machinery *} @@ -16,9 +16,9 @@ lemma transfer_morphismI[intro]: "transfer_morphism f A" by (simp add: transfer_morphism_def) -use "Tools/transfer.ML" +use "Tools/legacy_transfer.ML" -setup Transfer.setup +setup Legacy_Transfer.setup subsection {* Set up transfer from nat to int *} diff -r 365521737b6a -r b4490e1a0732 src/HOL/Tools/legacy_transfer.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Tools/legacy_transfer.ML Tue Apr 03 23:49:24 2012 +0200 @@ -0,0 +1,270 @@ +(* Title: HOL/Tools/transfer.ML + Author: Amine Chaieb, University of Cambridge, 2009 + Jeremy Avigad, Carnegie Mellon University + Florian Haftmann, TU Muenchen + +Simple transfer principle on theorems. +*) + +signature LEGACY_TRANSFER = +sig + datatype selection = Direction of term * term | Hints of string list | Prop + val transfer: Context.generic -> selection -> string list -> thm -> thm list + type entry + val add: thm -> bool -> entry -> Context.generic -> Context.generic + val del: thm -> entry -> Context.generic -> Context.generic + val drop: thm -> Context.generic -> Context.generic + val setup: theory -> theory +end; + +structure Legacy_Transfer : LEGACY_TRANSFER = +struct + +(* data administration *) + +val direction_of = Thm.dest_binop o Thm.dest_arg o cprop_of; + +val transfer_morphism_key = Drule.strip_imp_concl (Thm.cprop_of @{thm transfer_morphismI}); + +fun check_morphism_key ctxt key = + let + val _ = Thm.match (transfer_morphism_key, Thm.cprop_of key) + handle Pattern.MATCH => error ("Transfer: expected theorem of the form " + ^ quote (Syntax.string_of_term ctxt (Thm.term_of transfer_morphism_key))); + in direction_of key end; + +type entry = { inj : thm list, embed : thm list, return : thm list, cong : thm list, + hints : string list }; + +val empty_entry = { inj = [], embed = [], return = [], cong = [], hints = [] }; +fun merge_entry ({ inj = inj1, embed = embed1, return = return1, cong = cong1, hints = hints1 } : entry, + { inj = inj2, embed = embed2, return = return2, cong = cong2, hints = hints2 } : entry) = + { inj = merge Thm.eq_thm (inj1, inj2), embed = merge Thm.eq_thm (embed1, embed2), + return = merge Thm.eq_thm (return1, return2), cong = merge Thm.eq_thm (cong1, cong2), + hints = merge (op =) (hints1, hints2) }; + +structure Data = Generic_Data +( + type T = (thm * entry) list; + val empty = []; + val extend = I; + val merge = AList.join Thm.eq_thm (K merge_entry); +); + + +(* data lookup *) + +fun transfer_rules_of ({ inj, embed, return, cong, ... } : entry) = + (inj, embed, return, cong); + +fun get_by_direction context (a, D) = + let + val ctxt = Context.proof_of context; + val certify = Thm.cterm_of (Context.theory_of context); + val a0 = certify a; + val D0 = certify D; + fun eq_direction ((a, D), thm') = + let + val (a', D') = direction_of thm'; + in a aconvc a' andalso D aconvc D' end; + in case AList.lookup eq_direction (Data.get context) (a0, D0) of + SOME e => ((a0, D0), transfer_rules_of e) + | NONE => error ("Transfer: no such instance: (" + ^ Syntax.string_of_term ctxt a ^ ", " ^ Syntax.string_of_term ctxt D ^ ")") + end; + +fun get_by_hints context hints = + let + val insts = map_filter (fn (k, e) => if exists (member (op =) (#hints e)) hints + then SOME (direction_of k, transfer_rules_of e) else NONE) (Data.get context); + val _ = if null insts then error ("Transfer: no such labels: " ^ commas_quote hints) else (); + in insts end; + +fun splits P [] = [] + | splits P (xs as (x :: _)) = + let + val (pss, qss) = List.partition (P x) xs; + in if null pss then [qss] else if null qss then [pss] else pss :: splits P qss end; + +fun get_by_prop context t = + let + val tys = map snd (Term.add_vars t []); + val _ = if null tys then error "Transfer: unable to guess instance" else (); + val tyss = splits (curry Type.could_unify) tys; + val get_ty = typ_of o ctyp_of_term o fst o direction_of; + val insts = map_filter (fn tys => get_first (fn (k, e) => + if Type.could_unify (hd tys, range_type (get_ty k)) + then SOME (direction_of k, transfer_rules_of e) + else NONE) (Data.get context)) tyss; + val _ = if null insts then + error "Transfer: no instances, provide direction or hints explicitly" else (); + in insts end; + + +(* applying transfer data *) + +fun transfer_thm ((raw_a, raw_D), (inj, embed, return, cong)) leave ctxt1 thm = + let + (* identify morphism function *) + val ([a, D], ctxt2) = ctxt1 + |> Variable.import true (map Drule.mk_term [raw_a, raw_D]) + |>> map Drule.dest_term o snd; + val transform = Thm.apply @{cterm "Trueprop"} o Thm.apply D; + val T = Thm.typ_of (Thm.ctyp_of_term a); + val (aT, bT) = (Term.range_type T, Term.domain_type T); + + (* determine variables to transfer *) + val ctxt3 = ctxt2 + |> Variable.declare_thm thm + |> Variable.declare_term (term_of a) + |> Variable.declare_term (term_of D); + val certify = Thm.cterm_of (Proof_Context.theory_of ctxt3); + val vars = filter (fn ((v, _), T) => Type.could_unify (T, aT) andalso + not (member (op =) leave v)) (Term.add_vars (Thm.prop_of thm) []); + val c_vars = map (certify o Var) vars; + val (vs', ctxt4) = Variable.variant_fixes (map (fst o fst) vars) ctxt3; + val c_vars' = map (certify o (fn v => Free (v, bT))) vs'; + val c_exprs' = map (Thm.apply a) c_vars'; + + (* transfer *) + val (hyps, ctxt5) = ctxt4 + |> Assumption.add_assumes (map transform c_vars'); + val simpset = + Simplifier.context ctxt5 HOL_ss addsimps (inj @ embed @ return) + |> fold Simplifier.add_cong cong; + val thm' = thm + |> Drule.cterm_instantiate (c_vars ~~ c_exprs') + |> fold_rev Thm.implies_intr (map cprop_of hyps) + |> Simplifier.asm_full_simplify simpset + in singleton (Variable.export ctxt5 ctxt1) thm' end; + +fun transfer_thm_multiple insts leave ctxt thm = + map (fn inst => transfer_thm inst leave ctxt thm) insts; + +datatype selection = Direction of term * term | Hints of string list | Prop; + +fun insts_for context thm (Direction direction) = [get_by_direction context direction] + | insts_for context thm (Hints hints) = get_by_hints context hints + | insts_for context thm Prop = get_by_prop context (Thm.prop_of thm); + +fun transfer context selection leave thm = + transfer_thm_multiple (insts_for context thm selection) leave (Context.proof_of context) thm; + + +(* maintaining transfer data *) + +fun extend_entry ctxt (a, D) guess + { inj = inj1, embed = embed1, return = return1, cong = cong1, hints = hints1 } + { inj = inj2, embed = embed2, return = return2, cong = cong2, hints = hints2 } = + let + fun add_del eq del add = union eq add #> subtract eq del; + val guessed = if guess + then map (fn thm => transfer_thm + ((a, D), (if null inj1 then inj2 else inj1, [], [], cong1)) [] ctxt thm RS sym) embed1 + else []; + in + { inj = union Thm.eq_thm inj1 inj2, embed = union Thm.eq_thm embed1 embed2, + return = union Thm.eq_thm guessed (union Thm.eq_thm return1 return2), + cong = union Thm.eq_thm cong1 cong2, hints = union (op =) hints1 hints2 } + end; + +fun diminish_entry + { inj = inj0, embed = embed0, return = return0, cong = cong0, hints = hints0 } + { inj = inj2, embed = embed2, return = return2, cong = cong2, hints = hints2 } = + { inj = subtract Thm.eq_thm inj0 inj2, embed = subtract Thm.eq_thm embed0 embed2, + return = subtract Thm.eq_thm return0 return2, cong = subtract Thm.eq_thm cong0 cong2, + hints = subtract (op =) hints0 hints2 }; + +fun add key guess entry context = + let + val ctxt = Context.proof_of context; + val a_D = check_morphism_key ctxt key; + in + context + |> Data.map (AList.map_default Thm.eq_thm + (key, empty_entry) (extend_entry ctxt a_D guess entry)) + end; + +fun del key entry = Data.map (AList.map_entry Thm.eq_thm key (diminish_entry entry)); + +fun drop key = Data.map (AList.delete Thm.eq_thm key); + + +(* syntax *) + +local + +fun these scan = Scan.optional scan []; +fun these_pair scan = Scan.optional scan ([], []); + +fun keyword k = Scan.lift (Args.$$$ k) >> K (); +fun keyword_colon k = Scan.lift (Args.$$$ k -- Args.colon) >> K (); + +val addN = "add"; +val delN = "del"; +val keyN = "key"; +val modeN = "mode"; +val automaticN = "automatic"; +val manualN = "manual"; +val injN = "inj"; +val embedN = "embed"; +val returnN = "return"; +val congN = "cong"; +val labelsN = "labels"; + +val leavingN = "leaving"; +val directionN = "direction"; + +val any_keyword = keyword_colon addN || keyword_colon delN || keyword_colon keyN + || keyword_colon modeN || keyword_colon injN || keyword_colon embedN || keyword_colon returnN + || keyword_colon congN || keyword_colon labelsN + || keyword_colon leavingN || keyword_colon directionN; + +val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat; +val names = Scan.repeat (Scan.unless any_keyword (Scan.lift Args.name)) + +val mode = keyword_colon modeN |-- ((Scan.lift (Args.$$$ manualN) >> K false) + || (Scan.lift (Args.$$$ automaticN) >> K true)); +val inj = (keyword_colon injN |-- thms) -- these (keyword_colon delN |-- thms); +val embed = (keyword_colon embedN |-- thms) -- these (keyword_colon delN |-- thms); +val return = (keyword_colon returnN |-- thms) -- these (keyword_colon delN |-- thms); +val cong = (keyword_colon congN |-- thms) -- these (keyword_colon delN |-- thms); +val labels = (keyword_colon labelsN |-- names) -- these (keyword_colon delN |-- names); + +val entry_pair = these_pair inj -- these_pair embed + -- these_pair return -- these_pair cong -- these_pair labels + >> (fn (((((inja, injd), (embeda, embedd)), (returna, returnd)), (conga, congd)), + (hintsa, hintsd)) => + ({ inj = inja, embed = embeda, return = returna, cong = conga, hints = hintsa }, + { inj = injd, embed = embedd, return = returnd, cong = congd, hints = hintsd })); + +val selection = (keyword_colon directionN |-- (Args.term -- Args.term) >> Direction) + || these names >> (fn hints => if null hints then Prop else Hints hints); + +in + +val transfer_attribute = keyword delN >> K (Thm.declaration_attribute drop) + || keyword addN |-- Scan.optional mode true -- entry_pair + >> (fn (guess, (entry_add, entry_del)) => Thm.declaration_attribute + (fn thm => add thm guess entry_add #> del thm entry_del)) + || keyword_colon keyN |-- Attrib.thm + >> (fn key => Thm.declaration_attribute + (fn thm => add key false + { inj = [], embed = [], return = [thm], cong = [], hints = [] })); + +val transferred_attribute = selection -- these (keyword_colon leavingN |-- names) + >> (fn (selection, leave) => Thm.rule_attribute (fn context => + Conjunction.intr_balanced o transfer context selection leave)); + +end; + + +(* theory setup *) + +val setup = + Attrib.setup @{binding transfer} transfer_attribute + "Installs transfer data" #> + Attrib.setup @{binding transferred} transferred_attribute + "Transfers theorems"; + +end; diff -r 365521737b6a -r b4490e1a0732 src/HOL/Tools/transfer.ML --- a/src/HOL/Tools/transfer.ML Tue Apr 03 21:39:28 2012 +0200 +++ b/src/HOL/Tools/transfer.ML Tue Apr 03 23:49:24 2012 +0200 @@ -1,270 +1,176 @@ (* Title: HOL/Tools/transfer.ML - Author: Amine Chaieb, University of Cambridge, 2009 - Jeremy Avigad, Carnegie Mellon University - Florian Haftmann, TU Muenchen + Author: Brian Huffman, TU Muenchen -Simple transfer principle on theorems. +Generic theorem transfer method. *) signature TRANSFER = sig - datatype selection = Direction of term * term | Hints of string list | Prop - val transfer: Context.generic -> selection -> string list -> thm -> thm list - type entry - val add: thm -> bool -> entry -> Context.generic -> Context.generic - val del: thm -> entry -> Context.generic -> Context.generic - val drop: thm -> Context.generic -> Context.generic + val fo_conv: Proof.context -> conv + val prep_conv: conv + val transfer_add: attribute + val transfer_del: attribute + val transfer_tac: Proof.context -> int -> tactic + val correspondence_tac: Proof.context -> int -> tactic val setup: theory -> theory -end; +end structure Transfer : TRANSFER = struct -(* data administration *) - -val direction_of = Thm.dest_binop o Thm.dest_arg o cprop_of; - -val transfer_morphism_key = Drule.strip_imp_concl (Thm.cprop_of @{thm transfer_morphismI}); +structure Data = Named_Thms +( + val name = @{binding transfer_raw} + val description = "raw correspondence rule for transfer method" +) -fun check_morphism_key ctxt key = - let - val _ = Thm.match (transfer_morphism_key, Thm.cprop_of key) - handle Pattern.MATCH => error ("Transfer: expected theorem of the form " - ^ quote (Syntax.string_of_term ctxt (Thm.term_of transfer_morphism_key))); - in direction_of key end; +(** Conversions **) -type entry = { inj : thm list, embed : thm list, return : thm list, cong : thm list, - hints : string list }; +val App_rule = Thm.symmetric @{thm App_def} +val Abs_rule = Thm.symmetric @{thm Abs_def} +val Rel_rule = Thm.symmetric @{thm Rel_def} -val empty_entry = { inj = [], embed = [], return = [], cong = [], hints = [] }; -fun merge_entry ({ inj = inj1, embed = embed1, return = return1, cong = cong1, hints = hints1 } : entry, - { inj = inj2, embed = embed2, return = return2, cong = cong2, hints = hints2 } : entry) = - { inj = merge Thm.eq_thm (inj1, inj2), embed = merge Thm.eq_thm (embed1, embed2), - return = merge Thm.eq_thm (return1, return2), cong = merge Thm.eq_thm (cong1, cong2), - hints = merge (op =) (hints1, hints2) }; +fun dest_funcT cT = + (case Thm.dest_ctyp cT of [T, U] => (T, U) + | _ => raise TYPE ("dest_funcT", [Thm.typ_of cT], [])) + +fun App_conv ct = + let val (cT, cU) = dest_funcT (Thm.ctyp_of_term ct) + in Drule.instantiate' [SOME cT, SOME cU] [SOME ct] App_rule end -structure Data = Generic_Data -( - type T = (thm * entry) list; - val empty = []; - val extend = I; - val merge = AList.join Thm.eq_thm (K merge_entry); -); +fun Abs_conv ct = + let val (cT, cU) = dest_funcT (Thm.ctyp_of_term ct) + in Drule.instantiate' [SOME cT, SOME cU] [SOME ct] Abs_rule end - -(* data lookup *) - -fun transfer_rules_of ({ inj, embed, return, cong, ... } : entry) = - (inj, embed, return, cong); +fun Rel_conv ct = + let val (cT, cT') = dest_funcT (Thm.ctyp_of_term ct) + val (cU, _) = dest_funcT cT' + in Drule.instantiate' [SOME cT, SOME cU] [SOME ct] Rel_rule end -fun get_by_direction context (a, D) = - let - val ctxt = Context.proof_of context; - val certify = Thm.cterm_of (Context.theory_of context); - val a0 = certify a; - val D0 = certify D; - fun eq_direction ((a, D), thm') = - let - val (a', D') = direction_of thm'; - in a aconvc a' andalso D aconvc D' end; - in case AList.lookup eq_direction (Data.get context) (a0, D0) of - SOME e => ((a0, D0), transfer_rules_of e) - | NONE => error ("Transfer: no such instance: (" - ^ Syntax.string_of_term ctxt a ^ ", " ^ Syntax.string_of_term ctxt D ^ ")") - end; +fun Trueprop_conv cv ct = + (case Thm.term_of ct of + Const (@{const_name Trueprop}, _) $ _ => Conv.arg_conv cv ct + | _ => raise CTERM ("Trueprop_conv", [ct])) + +(* Conversion to insert tags on every application and abstraction. *) +fun fo_conv ctxt ct = ( + Conv.combination_conv (fo_conv ctxt then_conv App_conv) (fo_conv ctxt) + else_conv + Conv.abs_conv (fo_conv o snd) ctxt then_conv Abs_conv + else_conv + Conv.all_conv) ct -fun get_by_hints context hints = - let - val insts = map_filter (fn (k, e) => if exists (member (op =) (#hints e)) hints - then SOME (direction_of k, transfer_rules_of e) else NONE) (Data.get context); - val _ = if null insts then error ("Transfer: no such labels: " ^ commas_quote hints) else (); - in insts end; - -fun splits P [] = [] - | splits P (xs as (x :: _)) = - let - val (pss, qss) = List.partition (P x) xs; - in if null pss then [qss] else if null qss then [pss] else pss :: splits P qss end; +(* Conversion to preprocess a correspondence rule *) +fun prep_conv ct = ( + Conv.implies_conv Conv.all_conv prep_conv + else_conv + Trueprop_conv (Conv.fun_conv (Conv.fun_conv Rel_conv)) + else_conv + Conv.all_conv) ct -fun get_by_prop context t = - let - val tys = map snd (Term.add_vars t []); - val _ = if null tys then error "Transfer: unable to guess instance" else (); - val tyss = splits (curry Type.could_unify) tys; - val get_ty = typ_of o ctyp_of_term o fst o direction_of; - val insts = map_filter (fn tys => get_first (fn (k, e) => - if Type.could_unify (hd tys, range_type (get_ty k)) - then SOME (direction_of k, transfer_rules_of e) - else NONE) (Data.get context)) tyss; - val _ = if null insts then - error "Transfer: no instances, provide direction or hints explicitly" else (); - in insts end; +(* Conversion to prep a proof goal containing a correspondence rule *) +fun correspond_conv ctxt ct = ( + Conv.forall_conv (correspond_conv o snd) ctxt + else_conv + Conv.implies_conv Conv.all_conv (correspond_conv ctxt) + else_conv + Trueprop_conv + (Conv.combination_conv + (Conv.combination_conv Rel_conv (fo_conv ctxt)) (fo_conv ctxt)) + else_conv + Conv.all_conv) ct -(* applying transfer data *) +(** Transfer proof method **) + +fun bnames (t $ u) = bnames t @ bnames u + | bnames (Abs (x,_,t)) = x :: bnames t + | bnames _ = [] -fun transfer_thm ((raw_a, raw_D), (inj, embed, return, cong)) leave ctxt1 thm = - let - (* identify morphism function *) - val ([a, D], ctxt2) = ctxt1 - |> Variable.import true (map Drule.mk_term [raw_a, raw_D]) - |>> map Drule.dest_term o snd; - val transform = Thm.apply @{cterm "Trueprop"} o Thm.apply D; - val T = Thm.typ_of (Thm.ctyp_of_term a); - val (aT, bT) = (Term.range_type T, Term.domain_type T); - - (* determine variables to transfer *) - val ctxt3 = ctxt2 - |> Variable.declare_thm thm - |> Variable.declare_term (term_of a) - |> Variable.declare_term (term_of D); - val certify = Thm.cterm_of (Proof_Context.theory_of ctxt3); - val vars = filter (fn ((v, _), T) => Type.could_unify (T, aT) andalso - not (member (op =) leave v)) (Term.add_vars (Thm.prop_of thm) []); - val c_vars = map (certify o Var) vars; - val (vs', ctxt4) = Variable.variant_fixes (map (fst o fst) vars) ctxt3; - val c_vars' = map (certify o (fn v => Free (v, bT))) vs'; - val c_exprs' = map (Thm.apply a) c_vars'; +fun rename [] t = (t, []) + | rename (x::xs) ((c as Const (@{const_name Abs}, _)) $ Abs (_, T, t)) = + let val (t', xs') = rename xs t + in (c $ Abs (x, T, t'), xs') end + | rename xs0 (t $ u) = + let val (t', xs1) = rename xs0 t + val (u', xs2) = rename xs1 u + in (t' $ u', xs2) end + | rename xs t = (t, xs) - (* transfer *) - val (hyps, ctxt5) = ctxt4 - |> Assumption.add_assumes (map transform c_vars'); - val simpset = - Simplifier.context ctxt5 HOL_ss addsimps (inj @ embed @ return) - |> fold Simplifier.add_cong cong; - val thm' = thm - |> Drule.cterm_instantiate (c_vars ~~ c_exprs') - |> fold_rev Thm.implies_intr (map cprop_of hyps) - |> Simplifier.asm_full_simplify simpset - in singleton (Variable.export ctxt5 ctxt1) thm' end; +fun cert ctxt t = cterm_of (Proof_Context.theory_of ctxt) t -fun transfer_thm_multiple insts leave ctxt thm = - map (fn inst => transfer_thm inst leave ctxt thm) insts; - -datatype selection = Direction of term * term | Hints of string list | Prop; - -fun insts_for context thm (Direction direction) = [get_by_direction context direction] - | insts_for context thm (Hints hints) = get_by_hints context hints - | insts_for context thm Prop = get_by_prop context (Thm.prop_of thm); +fun RelT (Const (@{const_name Rel}, _) $ _ $ _ $ y) = fastype_of y -fun transfer context selection leave thm = - transfer_thm_multiple (insts_for context thm selection) leave (Context.proof_of context) thm; - - -(* maintaining transfer data *) - -fun extend_entry ctxt (a, D) guess - { inj = inj1, embed = embed1, return = return1, cong = cong1, hints = hints1 } - { inj = inj2, embed = embed2, return = return2, cong = cong2, hints = hints2 } = +(* Tactic to correspond a value to itself *) +fun eq_tac ctxt = SUBGOAL (fn (t, i) => let - fun add_del eq del add = union eq add #> subtract eq del; - val guessed = if guess - then map (fn thm => transfer_thm - ((a, D), (if null inj1 then inj2 else inj1, [], [], cong1)) [] ctxt thm RS sym) embed1 - else []; + val T = RelT (HOLogic.dest_Trueprop (Logic.strip_assums_concl t)) + val cT = ctyp_of (Proof_Context.theory_of ctxt) T + val rews = [@{thm fun_rel_eq [symmetric, THEN eq_reflection]}] + val thm1 = Drule.instantiate' [SOME cT] [] @{thm Rel_eq_refl} + val thm2 = Raw_Simplifier.rewrite_rule rews thm1 in - { inj = union Thm.eq_thm inj1 inj2, embed = union Thm.eq_thm embed1 embed2, - return = union Thm.eq_thm guessed (union Thm.eq_thm return1 return2), - cong = union Thm.eq_thm cong1 cong2, hints = union (op =) hints1 hints2 } - end; + rtac thm2 i + end handle Match => no_tac | TERM _ => no_tac) -fun diminish_entry - { inj = inj0, embed = embed0, return = return0, cong = cong0, hints = hints0 } - { inj = inj2, embed = embed2, return = return2, cong = cong2, hints = hints2 } = - { inj = subtract Thm.eq_thm inj0 inj2, embed = subtract Thm.eq_thm embed0 embed2, - return = subtract Thm.eq_thm return0 return2, cong = subtract Thm.eq_thm cong0 cong2, - hints = subtract (op =) hints0 hints2 }; - -fun add key guess entry context = +fun transfer_tac ctxt = SUBGOAL (fn (t, i) => let - val ctxt = Context.proof_of context; - val a_D = check_morphism_key ctxt key; + val bs = bnames t + val rules = Data.get ctxt in - context - |> Data.map (AList.map_default Thm.eq_thm - (key, empty_entry) (extend_entry ctxt a_D guess entry)) - end; - -fun del key entry = Data.map (AList.map_entry Thm.eq_thm key (diminish_entry entry)); - -fun drop key = Data.map (AList.delete Thm.eq_thm key); - - -(* syntax *) - -local - -fun these scan = Scan.optional scan []; -fun these_pair scan = Scan.optional scan ([], []); - -fun keyword k = Scan.lift (Args.$$$ k) >> K (); -fun keyword_colon k = Scan.lift (Args.$$$ k -- Args.colon) >> K (); - -val addN = "add"; -val delN = "del"; -val keyN = "key"; -val modeN = "mode"; -val automaticN = "automatic"; -val manualN = "manual"; -val injN = "inj"; -val embedN = "embed"; -val returnN = "return"; -val congN = "cong"; -val labelsN = "labels"; - -val leavingN = "leaving"; -val directionN = "direction"; - -val any_keyword = keyword_colon addN || keyword_colon delN || keyword_colon keyN - || keyword_colon modeN || keyword_colon injN || keyword_colon embedN || keyword_colon returnN - || keyword_colon congN || keyword_colon labelsN - || keyword_colon leavingN || keyword_colon directionN; + EVERY + [rewrite_goal_tac @{thms transfer_forall_eq transfer_implies_eq} i, + CONVERSION (Trueprop_conv (fo_conv ctxt)) i, + rtac @{thm transfer_start [rotated]} i, + REPEAT_ALL_NEW (resolve_tac rules ORELSE' atac ORELSE' eq_tac ctxt) (i + 1), + (* Alpha-rename bound variables in goal *) + SUBGOAL (fn (u, i) => + rtac @{thm equal_elim_rule1} i THEN + rtac (Thm.reflexive (cert ctxt (fst (rename bs u)))) i) i, + (* FIXME: rewrite_goal_tac does unwanted eta-contraction *) + rewrite_goal_tac @{thms App_def Abs_def} i, + rewrite_goal_tac @{thms transfer_forall_eq [symmetric] transfer_implies_eq [symmetric]} i, + rtac @{thm _} i] + end) -val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat; -val names = Scan.repeat (Scan.unless any_keyword (Scan.lift Args.name)) +fun correspondence_tac ctxt i = + let + val rules = Data.get ctxt + in + EVERY + [CONVERSION (correspond_conv ctxt) i, + REPEAT_ALL_NEW + (resolve_tac rules ORELSE' atac ORELSE' eq_tac ctxt) i] + end -val mode = keyword_colon modeN |-- ((Scan.lift (Args.$$$ manualN) >> K false) - || (Scan.lift (Args.$$$ automaticN) >> K true)); -val inj = (keyword_colon injN |-- thms) -- these (keyword_colon delN |-- thms); -val embed = (keyword_colon embedN |-- thms) -- these (keyword_colon delN |-- thms); -val return = (keyword_colon returnN |-- thms) -- these (keyword_colon delN |-- thms); -val cong = (keyword_colon congN |-- thms) -- these (keyword_colon delN |-- thms); -val labels = (keyword_colon labelsN |-- names) -- these (keyword_colon delN |-- names); - -val entry_pair = these_pair inj -- these_pair embed - -- these_pair return -- these_pair cong -- these_pair labels - >> (fn (((((inja, injd), (embeda, embedd)), (returna, returnd)), (conga, congd)), - (hintsa, hintsd)) => - ({ inj = inja, embed = embeda, return = returna, cong = conga, hints = hintsa }, - { inj = injd, embed = embedd, return = returnd, cong = congd, hints = hintsd })); +val transfer_method = + Scan.succeed (fn ctxt => SIMPLE_METHOD' (transfer_tac ctxt)) -val selection = (keyword_colon directionN |-- (Args.term -- Args.term) >> Direction) - || these names >> (fn hints => if null hints then Prop else Hints hints); +val correspondence_method = + Scan.succeed (fn ctxt => SIMPLE_METHOD' (correspondence_tac ctxt)) -in +(* Attribute for correspondence rules *) + +val prep_rule = Conv.fconv_rule prep_conv -val transfer_attribute = keyword delN >> K (Thm.declaration_attribute drop) - || keyword addN |-- Scan.optional mode true -- entry_pair - >> (fn (guess, (entry_add, entry_del)) => Thm.declaration_attribute - (fn thm => add thm guess entry_add #> del thm entry_del)) - || keyword_colon keyN |-- Attrib.thm - >> (fn key => Thm.declaration_attribute - (fn thm => add key false - { inj = [], embed = [], return = [thm], cong = [], hints = [] })); +val transfer_add = + Thm.declaration_attribute (Data.add_thm o prep_rule) -val transferred_attribute = selection -- these (keyword_colon leavingN |-- names) - >> (fn (selection, leave) => Thm.rule_attribute (fn context => - Conjunction.intr_balanced o transfer context selection leave)); +val transfer_del = + Thm.declaration_attribute (Data.del_thm o prep_rule) -end; +val transfer_attribute = + Attrib.add_del transfer_add transfer_del - -(* theory setup *) +(* Theory setup *) val setup = - Attrib.setup @{binding transfer} transfer_attribute - "Installs transfer data" #> - Attrib.setup @{binding transferred} transferred_attribute - "Transfers theorems"; + Data.setup + #> Attrib.setup @{binding transfer_rule} transfer_attribute + "correspondence rule for transfer method" + #> Method.setup @{binding transfer} transfer_method + "generic theorem transfer method" + #> Method.setup @{binding correspondence} correspondence_method + "for proving correspondence rules" -end; +end diff -r 365521737b6a -r b4490e1a0732 src/HOL/Transfer.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Transfer.thy Tue Apr 03 23:49:24 2012 +0200 @@ -0,0 +1,240 @@ +(* Title: HOL/Transfer.thy + Author: Brian Huffman, TU Muenchen +*) + +header {* Generic theorem transfer using relations *} + +theory Transfer +imports Plain Hilbert_Choice +uses ("Tools/transfer.ML") +begin + +subsection {* Relator for function space *} + +definition + fun_rel :: "('a \ 'c \ bool) \ ('b \ 'd \ bool) \ ('a \ 'b) \ ('c \ 'd) \ bool" (infixr "===>" 55) +where + "fun_rel A B = (\f g. \x y. A x y \ B (f x) (g y))" + +lemma fun_relI [intro]: + assumes "\x y. A x y \ B (f x) (g y)" + shows "(A ===> B) f g" + using assms by (simp add: fun_rel_def) + +lemma fun_relD: + assumes "(A ===> B) f g" and "A x y" + shows "B (f x) (g y)" + using assms by (simp add: fun_rel_def) + +lemma fun_relE: + assumes "(A ===> B) f g" and "A x y" + obtains "B (f x) (g y)" + using assms by (simp add: fun_rel_def) + +lemma fun_rel_eq: + shows "((op =) ===> (op =)) = (op =)" + by (auto simp add: fun_eq_iff elim: fun_relE) + +lemma fun_rel_eq_rel: + shows "((op =) ===> R) = (\f g. \x. R (f x) (g x))" + by (simp add: fun_rel_def) + + +subsection {* Transfer method *} + +text {* Explicit tags for application, abstraction, and relation +membership allow for backward proof methods. *} + +definition App :: "('a \ 'b) \ 'a \ 'b" + where "App f \ f" + +definition Abs :: "('a \ 'b) \ 'a \ 'b" + where "Abs f \ f" + +definition Rel :: "('a \ 'b \ bool) \ 'a \ 'b \ bool" + where "Rel r \ r" + +text {* Handling of meta-logic connectives *} + +definition transfer_forall where + "transfer_forall \ All" + +definition transfer_implies where + "transfer_implies \ op \" + +lemma transfer_forall_eq: "(\x. P x) \ Trueprop (transfer_forall (\x. P x))" + unfolding atomize_all transfer_forall_def .. + +lemma transfer_implies_eq: "(A \ B) \ Trueprop (transfer_implies A B)" + unfolding atomize_imp transfer_implies_def .. + +lemma transfer_start: "\Rel (op =) P Q; P\ \ Q" + unfolding Rel_def by simp + +lemma transfer_start': "\Rel (op \) P Q; P\ \ Q" + unfolding Rel_def by simp + +lemma Rel_eq_refl: "Rel (op =) x x" + unfolding Rel_def .. + +use "Tools/transfer.ML" + +setup Transfer.setup + +lemma Rel_App [transfer_raw]: + assumes "Rel (A ===> B) f g" and "Rel A x y" + shows "Rel B (App f x) (App g y)" + using assms unfolding Rel_def App_def fun_rel_def by fast + +lemma Rel_Abs [transfer_raw]: + assumes "\x y. Rel A x y \ Rel B (f x) (g y)" + shows "Rel (A ===> B) (Abs (\x. f x)) (Abs (\y. g y))" + using assms unfolding Rel_def Abs_def fun_rel_def by fast + +hide_const (open) App Abs Rel + + +subsection {* Predicates on relations, i.e. ``class constraints'' *} + +definition right_total :: "('a \ 'b \ bool) \ bool" + where "right_total R \ (\y. \x. R x y)" + +definition right_unique :: "('a \ 'b \ bool) \ bool" + where "right_unique R \ (\x y z. R x y \ R x z \ y = z)" + +definition bi_total :: "('a \ 'b \ bool) \ bool" + where "bi_total R \ (\x. \y. R x y) \ (\y. \x. R x y)" + +definition bi_unique :: "('a \ 'b \ bool) \ bool" + where "bi_unique R \ + (\x y z. R x y \ R x z \ y = z) \ + (\x y z. R x z \ R y z \ x = y)" + +lemma right_total_alt_def: + "right_total R \ ((R ===> op \) ===> op \) All All" + unfolding right_total_def fun_rel_def + apply (rule iffI, fast) + apply (rule allI) + apply (drule_tac x="\x. True" in spec) + apply (drule_tac x="\y. \x. R x y" in spec) + apply fast + done + +lemma right_unique_alt_def: + "right_unique R \ (R ===> R ===> op \) (op =) (op =)" + unfolding right_unique_def fun_rel_def by auto + +lemma bi_total_alt_def: + "bi_total R \ ((R ===> op =) ===> op =) All All" + unfolding bi_total_def fun_rel_def + apply (rule iffI, fast) + apply safe + apply (drule_tac x="\x. \y. R x y" in spec) + apply (drule_tac x="\y. True" in spec) + apply fast + apply (drule_tac x="\x. True" in spec) + apply (drule_tac x="\y. \x. R x y" in spec) + apply fast + done + +lemma bi_unique_alt_def: + "bi_unique R \ (R ===> R ===> op =) (op =) (op =)" + unfolding bi_unique_def fun_rel_def by auto + + +subsection {* Properties of relators *} + +lemma right_total_eq [transfer_rule]: "right_total (op =)" + unfolding right_total_def by simp + +lemma right_unique_eq [transfer_rule]: "right_unique (op =)" + unfolding right_unique_def by simp + +lemma bi_total_eq [transfer_rule]: "bi_total (op =)" + unfolding bi_total_def by simp + +lemma bi_unique_eq [transfer_rule]: "bi_unique (op =)" + unfolding bi_unique_def by simp + +lemma right_total_fun [transfer_rule]: + "\right_unique A; right_total B\ \ right_total (A ===> B)" + unfolding right_total_def fun_rel_def + apply (rule allI, rename_tac g) + apply (rule_tac x="\x. SOME z. B z (g (THE y. A x y))" in exI) + apply clarify + apply (subgoal_tac "(THE y. A x y) = y", simp) + apply (rule someI_ex) + apply (simp) + apply (rule the_equality) + apply assumption + apply (simp add: right_unique_def) + done + +lemma right_unique_fun [transfer_rule]: + "\right_total A; right_unique B\ \ right_unique (A ===> B)" + unfolding right_total_def right_unique_def fun_rel_def + by (clarify, rule ext, fast) + +lemma bi_total_fun [transfer_rule]: + "\bi_unique A; bi_total B\ \ bi_total (A ===> B)" + unfolding bi_total_def fun_rel_def + apply safe + apply (rename_tac f) + apply (rule_tac x="\y. SOME z. B (f (THE x. A x y)) z" in exI) + apply clarify + apply (subgoal_tac "(THE x. A x y) = x", simp) + apply (rule someI_ex) + apply (simp) + apply (rule the_equality) + apply assumption + apply (simp add: bi_unique_def) + apply (rename_tac g) + apply (rule_tac x="\x. SOME z. B z (g (THE y. A x y))" in exI) + apply clarify + apply (subgoal_tac "(THE y. A x y) = y", simp) + apply (rule someI_ex) + apply (simp) + apply (rule the_equality) + apply assumption + apply (simp add: bi_unique_def) + done + +lemma bi_unique_fun [transfer_rule]: + "\bi_total A; bi_unique B\ \ bi_unique (A ===> B)" + unfolding bi_total_def bi_unique_def fun_rel_def fun_eq_iff + by (safe, metis, fast) + + +subsection {* Correspondence rules *} + +lemma eq_parametric [transfer_rule]: + assumes "bi_unique A" + shows "(A ===> A ===> op =) (op =) (op =)" + using assms unfolding bi_unique_def fun_rel_def by auto + +lemma All_parametric [transfer_rule]: + assumes "bi_total A" + shows "((A ===> op =) ===> op =) All All" + using assms unfolding bi_total_def fun_rel_def by fast + +lemma Ex_parametric [transfer_rule]: + assumes "bi_total A" + shows "((A ===> op =) ===> op =) Ex Ex" + using assms unfolding bi_total_def fun_rel_def by fast + +lemma If_parametric [transfer_rule]: "(op = ===> A ===> A ===> A) If If" + unfolding fun_rel_def by simp + +lemma comp_parametric [transfer_rule]: + "((B ===> C) ===> (A ===> B) ===> (A ===> C)) (op \) (op \)" + unfolding fun_rel_def by simp + +lemma fun_upd_parametric [transfer_rule]: + assumes [transfer_rule]: "bi_unique A" + shows "((A ===> B) ===> A ===> B ===> A ===> B) fun_upd fun_upd" + unfolding fun_upd_def [abs_def] by correspondence + +lemmas transfer_forall_parametric [transfer_rule] + = All_parametric [folded transfer_forall_def] + +end