# HG changeset patch # User wenzelm # Date 909164120 -7200 # Node ID 369dca267a3b6f4ee15d37eebb05b142565f6853 # Parent 7ab9dd4a8ba6aa47394f7eafc076bbb31432bc07 SYNC: records (draft version); diff -r 7ab9dd4a8ba6 -r 369dca267a3b doc-src/Logics/HOL.tex --- a/doc-src/Logics/HOL.tex Fri Oct 23 18:51:54 1998 +0200 +++ b/doc-src/Logics/HOL.tex Fri Oct 23 19:35:20 1998 +0200 @@ -1242,7 +1242,7 @@ Here, \texttt{op +} is the name of the infix operator~\texttt{+}, following the standard convention. \begin{ttbox} -\sdx{primrec} "op +" nat +\sdx{primrec} " 0 + n = n" "Suc m + n = Suc(m + n)" \end{ttbox} @@ -1539,17 +1539,80 @@ class of all \HOL\ types. \end{warn} -\section{Record types} + +\section{Records} At a first approximation, records are just a minor generalization of tuples, where components may be addressed by labels instead of just position. The version of records offered by Isabelle/HOL is slightly more advanced, though, -supporting \emph{extensible record schemes}. This admits polymorphic -operations wrt.\ record extensions, yielding ``object-oriented'' effects like +supporting \emph{extensible record schemes}. This admits operations that are +polymorphic wrt.\ record extensions, yielding ``object-oriented'' effects like (single) inheritance. See also \cite{Naraschewski-Wenzel:1998:TPHOL} for more details on object-oriented verification and record subtyping in HOL. -\subsection{Defining records} +\subsection{Basics} + +Isabelle/HOL supports concrete syntax for both fixed and schematic record +terms and types: + +\begin{tabular}{l|l|l} + & terms & types \\ \hline + fixed & $\record{x = a\fs y = b}$ & $\record{x \ty A\fs y \ty B}$ \\ + scheme & $\record{x = a\fs y = b\fs \more = more}$ & + $\record{x \ty A\fs y \ty B\fs \more \ty \mu}$ \\ +\end{tabular} + +The \textsc{ascii} representation of $\record{~}$ is \texttt{(|~|)}. + +A fixed record $\record{x = a\fs y = b}$ has field $x$ of value $a$ and field +$y$ of value $b$. The corresponding type is $\record{x \ty A\fs y \ty B}$, +assuming $a \ty A$ and $b \ty B$. + +A record scheme like $\record{x = a\fs y = b\fs \more = more}$ contains fields +$x$ and $y$ as before, but also possibly further fields as indicated by above +``$\more$'' notation. We call ``$\more$'' the \emph{more part}; logically it +is just a free variable. In the literature this is also referred to as +\emph{row variable}. The more part of record schemes may be instantiated by +zero or more further components. For example, above scheme might get +instantiated to $\record{x = a\fs y = b\fs z = c\fs \more = more'}$, where +$more'$ refers to a different more part. + +Fixed records are special instances of record schemes, where $more$ is +properly terminated by the $unit$ element $()$. Thus $\record{x = a\fs y = + b}$ is just an abbreviation of $\record{x = a\fs y = b\fs \more = ()}$. + +\medskip + +There are two key features that make extensible records in a simply typed +language like HOL feasible: +\begin{enumerate} +\item the ``more'' part is internalized (as a free term or type variable), +\item field names are externalized, i.e.\ cannot be reasoned about within the + logic as first class values. +\end{enumerate} + +\medskip + +Records have to be defined explicitly, fixing their field names and types, +and (optional) parent record scheme (see \S\ref{sec:HOL:record-def}). +Afterwards, records may be formed using above syntax, while obeying the +canonical order of fields according to the declaration hierarchy. + +The record package also provides several operations like selectors and updates +(see \S\ref{sec:HOL:record-ops}, together with their characteristics properties +(see \S\ref{sec:HOL:record-thms}). + +There is a simple example exhibiting most basic aspects of extensible records +available. See theory \texttt{HOL/ex/Points} in the Isabelle sources. + + +\subsection{Defining records}\label{sec:HOL:record-def} + +The theory syntax for record type definitions is shown in +Fig.~\ref{fig:HOL:record}. For the definition of `typevarlist' and `type' see +\iflabelundefined{chap:classical} +{the appendix of the {\em Reference Manual\/}}% +{Appendix~\ref{app:TheorySyntax}}. \begin{figure}[htbp] \begin{rail} @@ -1561,17 +1624,114 @@ \label{fig:HOL:record} \end{figure} -Records have to be defined explicitely, fixing their field names and types, -and (optional) parent record scheme. The theory syntax for record type -definitions is shown in Fig.~\ref{fig:HOL:record}. For the definition of -`typevarlist' and `type' see \iflabelundefined{chap:classical} -{the appendix of the {\em Reference Manual\/}}% -{Appendix~\ref{app:TheorySyntax}}. - - -\subsection{Record operations and syntax} - -\subsection{Proof tools} +A general \ttindex{record} specification is of the following form: +\[ +\mathtt{record}~(\alpha@1, \dots, \alpha@n) \, t ~=~ + (\tau@1, \dots, \tau@m) \, s + c@1 :: \sigma@1 ~ \dots c@l :: \sigma@k +\] +where $\alpha@i$ are distinct type variables, and $\tau@i$, $\sigma@i$ types +containing at most variables $\alpha@1, \dots, \alpha@n$; type constructor $t$ +has to be new, while $s$ specifies an existing one. Also, the $c@i$ have to +be distinct fields names (which may be safely reused from other records). +Note that there has to be at least one field. + +\medskip + +Above definition introduces a new record type $(\alpha@1, \dots, \alpha@n) \, +t$ by extending an existing one $(\tau@1, \dots, \tau@m) \, s$ by new fields +$c@1, \dots, c@n$. The parent record specification is optional. By omitting +it, $(\alpha@1, \dots, \alpha@n) \,t$ becomes a root record which is not +derived from any other one. The hierarchy of records declared within any +theory forms a forest structure. + +The new type $(\alpha@1, \dots, \alpha@n) \, t$ is made an abbreviation for +the fixed record type $\record{c@1 \ty \sigma@1\fs \dots\fs c@k \ty + \sigma@k}$, and $(\alpha@1\fs \dots\fs \alpha@n\fs \mu) \, t_scheme$ is made +an abbreviation for $\record{c@1 \ty \sigma@1\fs \dots\fs c@k \ty \sigma@k\fs + \more \ty \mu}$. + + +\subsection{Record operations}\label{sec:HOL:record-ops} + +Any record definition as above produces selectors, updates and derived +constructors (make). To simplify the presentation we assume that $(\alpha@1, +\dots, \alpha@n) \, t$ is a root record with fields $c@i \ty \sigma@i$. + +Selectors and updates are available for any field proper field and the +pseudo-field $more$ as follows: +\begin{matharray}{lll} + c@i & \ty & (\alpha@1, \dots, \alpha@n, \mu) \, t_scheme \To \sigma@i \\ + c@i_update & \ty & \sigma@i \To (\alpha@1, \dots, \alpha@n, \mu) \, t_scheme \To + (\alpha@1, \dots, \alpha@n, \mu) \, t_scheme \To +\end{matharray} + +There is special syntax for updates: $r \, \record{x \asn a}$ abbreviates +$x_update \, a \, r$. Repeated updates are also supported like $r \, +\record{x \asn a} \, \record{y \asn b} \, \record{z \asn c}$ may be written as +$r \, \record{x \asn a\fs y \asn b\fs z \asn c}$. Note that because of +postfix notation the order of fields printed is reverse in the actual term. +This might be confusion under rare circumstances in conjunction with proof +tools like ordered rewriting. + +Updates are just function applications, so fields may be freely permuted in +the $\record{x \asn a\fs y \asn b}$ notation, as far as the logic is +concerned. Thus commutativity of updates can be proven within the logic for +any two fields, not as a general theorem (remember that fields are not +first-class). + +\medskip + +For convenience there are also derived record constructors as follows: +\begin{matharray}{lll} + make & \ty & \sigma@1 \To \dots \To \sigma@k \To + (\alpha@1, \dots, \alpha@n) \, t \\ + make_scheme & \ty & \sigma@1 \To \dots \To \sigma@k \To \mu \To + (\alpha@1, \dots, \alpha@n, \mu) \, t_scheme \\ +\end{matharray} + +\medskip + +Any of these operations are declared within a local name space for $t$. In +case that different records share field (base) names, one has to qualify +explicitly, e.g.\ $t.c_update$. This is recommended especially for generic +names like $make$, which should be rather $t.make$ to avoid confusion. + +\medskip + +Reconsider the case of records that are derived of some parent record. In +general, the latter may depend on another parent as well, resulting in a list +of ancestor records. Appending the lists of fields of all ancestors results +in a certain field prefix. The Isabelle/HOL record package automatically +takes care of this context of parent fields when defining selectors, updates +etc. + + +\subsection{Proof tools}\label{sec:HOL:record-thms} + +The record package provides the following proof rules for any record $t$: +\begin{enumerate} + +\item standard conversions (selectors or updates applied to record constructor + terms) are part of the standard simpset, + +\item inject equations of the form analogous to $((x, y) = (x', y')) \equiv + x=x' \conj y=y'$ are made part of standard simpset and claset (via + \texttt{addIffs}), + +\item a tactic for record field splitting (\ttindex{record_split_tac}) is made + part of the standard claset (as sage wrapper); this is based on a rule like + this: $(\all x PROP~P~x) \equiv (\all{a~b} PROP~P(a, b))$. +\end{enumerate} + +The first two kinds of rules are also stored within the theory as $t.simps$ +and $t.iffs$, respectively. + +The example \texttt{HOL/ex/Points} demonstrates typical proofs concerning +records. The basic idea is to make \ttindex{record_split_tac} expand +quantified record variables and then simplify by the conversion rules. By +using a combination of the simplifier and classical prover together with the +default simpset and claset, record problems should be solved (e.g.\ +\texttt{Auto_tac} or \texttt{Force_tac}) with a single stroke. \section{Datatype definitions} @@ -2423,8 +2583,8 @@ \footnote{It appeared in CADE~\cite{paulson-CADE}; a longer version is distributed with Isabelle.} % which you should refer to in case of difficulties. The package is simpler -than \ZF's thanks to \HOL's automatic type-checking. The type of the -(co)inductive determines the domain of the fixedpoint definition, and the +than \ZF's thanks to \HOL's automatic type-checking. The types of the +(co)inductive sets determine the domain of the fixedpoint definition, and the package does not use inference rules for type-checking. @@ -2446,7 +2606,7 @@ \item[\tt elims] is the list of elimination rule. \item[\tt elim] is the head of the list {\tt elims}. - + \item[\tt mk_cases] is a function to create simplified instances of {\tt elim}, using freeness reasoning on some underlying datatype. \end{description} @@ -2513,11 +2673,7 @@ \item The theory must separately declare the recursive sets as constants. -\item The names of the recursive sets must be alphanumeric - identifiers. - -\item Side-conditions of the form $x=t$, where the variable~$x$ does not - occur in~$t$, will be substituted through the rule \verb|mutual_induct|. +\item The names of the recursive sets should be alphanumeric identifiers. \end{itemize} diff -r 7ab9dd4a8ba6 -r 369dca267a3b doc-src/Logics/logics.ind --- a/doc-src/Logics/logics.ind Fri Oct 23 18:51:54 1998 +0200 +++ b/doc-src/Logics/logics.ind Fri Oct 23 19:35:20 1998 +0200 @@ -3,64 +3,64 @@ \item {\tt !} symbol, 60, 62, 69, 70, 82 \item {\tt[]} symbol, 82 \item {\tt\#} symbol, 82 - \item {\tt\#*} symbol, 48, 133 - \item {\tt\#+} symbol, 48, 133 + \item {\tt\#*} symbol, 48, 136 + \item {\tt\#+} symbol, 48, 136 \item {\tt\#-} symbol, 48 - \item {\tt\&} symbol, 7, 60, 110 - \item {\tt *} symbol, 27, 61, 79, 124 + \item {\tt\&} symbol, 7, 60, 113 + \item {\tt *} symbol, 27, 61, 79, 127 \item {\tt *} type, 77 - \item {\tt +} symbol, 44, 61, 79, 124 + \item {\tt +} symbol, 44, 61, 79, 127 \item {\tt +} type, 77 - \item {\tt -} symbol, 26, 61, 79, 133 - \item {\tt -->} symbol, 7, 60, 110, 124 + \item {\tt -} symbol, 26, 61, 79, 136 + \item {\tt -->} symbol, 7, 60, 113, 127 \item {\tt ->} symbol, 27 \item {\tt -``} symbol, 26 \item {\tt :} symbol, 26, 68 \item {\tt <} constant, 80 \item {\tt <} symbol, 79 - \item {\tt <->} symbol, 7, 110 + \item {\tt <->} symbol, 7, 113 \item {\tt <=} constant, 80 \item {\tt <=} symbol, 26, 68 - \item {\tt =} symbol, 7, 60, 110, 124 + \item {\tt =} symbol, 7, 60, 113, 127 \item {\tt ?} symbol, 60, 62, 69, 70 \item {\tt ?!} symbol, 60 \item {\tt\at} symbol, 60, 82 - \item {\tt `} symbol, 26, 124 + \item {\tt `} symbol, 26, 127 \item {\tt ``} symbol, 26, 68 \item \verb'{}' symbol, 68 - \item {\tt |} symbol, 7, 60, 110 - \item {\tt |-|} symbol, 133 + \item {\tt |} symbol, 7, 60, 113 + \item {\tt |-|} symbol, 136 \indexspace - \item {\tt 0} constant, 26, 79, 122 + \item {\tt 0} constant, 26, 79, 125 \indexspace - \item {\tt absdiff_def} theorem, 133 - \item {\tt add_assoc} theorem, 133 - \item {\tt add_commute} theorem, 133 - \item {\tt add_def} theorem, 48, 133 - \item {\tt add_inverse_diff} theorem, 133 - \item {\tt add_mp_tac}, \bold{131} - \item {\tt add_mult_dist} theorem, 48, 133 - \item {\tt add_safes}, \bold{116} - \item {\tt add_typing} theorem, 133 - \item {\tt add_unsafes}, \bold{116} - \item {\tt addC0} theorem, 133 - \item {\tt addC_succ} theorem, 133 + \item {\tt absdiff_def} theorem, 136 + \item {\tt add_assoc} theorem, 136 + \item {\tt add_commute} theorem, 136 + \item {\tt add_def} theorem, 48, 136 + \item {\tt add_inverse_diff} theorem, 136 + \item {\tt add_mp_tac}, \bold{134} + \item {\tt add_mult_dist} theorem, 48, 136 + \item {\tt add_safes}, \bold{119} + \item {\tt add_typing} theorem, 136 + \item {\tt add_unsafes}, \bold{119} + \item {\tt addC0} theorem, 136 + \item {\tt addC_succ} theorem, 136 \item {\tt Addsplits}, \bold{76} - \item {\tt addsplits}, \bold{76}, 81, 90 - \item {\tt ALL} symbol, 7, 27, 60, 62, 69, 70, 110 - \item {\tt All} constant, 7, 60, 110 + \item {\tt addsplits}, \bold{76}, 81, 92 + \item {\tt ALL} symbol, 7, 27, 60, 62, 69, 70, 113 + \item {\tt All} constant, 7, 60, 113 \item {\tt All_def} theorem, 64 \item {\tt all_dupE} theorem, 5, 9, 66 \item {\tt all_impE} theorem, 9 \item {\tt allE} theorem, 5, 9, 66 \item {\tt allI} theorem, 8, 66 - \item {\tt allL} theorem, 112, 116 - \item {\tt allL_thin} theorem, 113 - \item {\tt allR} theorem, 112 + \item {\tt allL} theorem, 115, 119 + \item {\tt allL_thin} theorem, 116 + \item {\tt allR} theorem, 115 \item {\tt and_def} theorem, 43, 64 \item {\tt app_def} theorem, 50 \item {\tt apply_def} theorem, 32 @@ -70,10 +70,10 @@ \item {\tt apply_Pair} theorem, 40, 58 \item {\tt apply_type} theorem, 40 \item {\tt arg_cong} theorem, 65 - \item {\tt Arith} theory, 47, 80, 132 + \item {\tt Arith} theory, 47, 80, 135 \item assumptions \subitem contradictory, 16 - \subitem in {\CTT}, 121, 131 + \subitem in {\CTT}, 124, 134 \indexspace @@ -82,9 +82,9 @@ \item {\tt Ball_def} theorem, 31, 71 \item {\tt ballE} theorem, 33, 34, 72 \item {\tt ballI} theorem, 34, 72 - \item {\tt basic} theorem, 112 - \item {\tt basic_defs}, \bold{129} - \item {\tt best_tac}, \bold{117} + \item {\tt basic} theorem, 115 + \item {\tt basic_defs}, \bold{132} + \item {\tt best_tac}, \bold{120} \item {\tt beta} theorem, 40, 41 \item {\tt Bex} constant, 26, 30, 68, 70 \item {\tt bex_cong} theorem, 33, 34 @@ -112,7 +112,7 @@ \indexspace \item {\tt case} constant, 44 - \item {\tt case} symbol, 63, 80, 81, 90 + \item {\tt case} symbol, 63, 80, 81, 92 \item {\tt case_def} theorem, 44 \item {\tt case_Inl} theorem, 44 \item {\tt case_Inr} theorem, 44 @@ -121,23 +121,23 @@ \item {\tt ccontr} theorem, 66 \item {\tt classical} theorem, 66 \item {\tt coinduct} theorem, 45 - \item {\tt coinductive}, 102--105 + \item {\tt coinductive}, 104--107 \item {\tt Collect} constant, 26, 27, 30, 68, 70 \item {\tt Collect_def} theorem, 31 \item {\tt Collect_mem_eq} theorem, 70, 71 \item {\tt Collect_subset} theorem, 37 - \item {\tt CollectD} theorem, 72, 108 + \item {\tt CollectD} theorem, 72, 110 \item {\tt CollectD1} theorem, 33, 35 \item {\tt CollectD2} theorem, 33, 35 \item {\tt CollectE} theorem, 33, 35, 72 - \item {\tt CollectI} theorem, 35, 72, 108 + \item {\tt CollectI} theorem, 35, 72, 110 \item {\tt comp_assoc} theorem, 46 \item {\tt comp_bij} theorem, 46 \item {\tt comp_def} theorem, 46 \item {\tt comp_func} theorem, 46 \item {\tt comp_func_apply} theorem, 46 \item {\tt comp_inj} theorem, 46 - \item {\tt comp_rls}, \bold{129} + \item {\tt comp_rls}, \bold{132} \item {\tt comp_surj} theorem, 46 \item {\tt comp_type} theorem, 46 \item {\tt Compl} constant, 68 @@ -158,12 +158,12 @@ \item {\tt conj_impE} theorem, 9, 10 \item {\tt conjE} theorem, 9, 65 \item {\tt conjI} theorem, 8, 65 - \item {\tt conjL} theorem, 112 - \item {\tt conjR} theorem, 112 + \item {\tt conjL} theorem, 115 + \item {\tt conjR} theorem, 115 \item {\tt conjunct1} theorem, 8, 65 \item {\tt conjunct2} theorem, 8, 65 - \item {\tt conL} theorem, 113 - \item {\tt conR} theorem, 113 + \item {\tt conL} theorem, 116 + \item {\tt conR} theorem, 116 \item {\tt cons} constant, 26, 27 \item {\tt cons_def} theorem, 32 \item {\tt Cons_iff} theorem, 50 @@ -172,38 +172,38 @@ \item {\tt ConsI} theorem, 50 \item {\tt consI1} theorem, 36 \item {\tt consI2} theorem, 36 - \item Constructive Type Theory, 121--143 - \item {\tt contr} constant, 122 + \item Constructive Type Theory, 124--146 + \item {\tt contr} constant, 125 \item {\tt converse} constant, 26, 40 \item {\tt converse_def} theorem, 32 - \item {\tt could_res}, \bold{115} - \item {\tt could_resolve_seq}, \bold{115} - \item {\tt CTT} theory, 1, 121 + \item {\tt could_res}, \bold{118} + \item {\tt could_resolve_seq}, \bold{118} + \item {\tt CTT} theory, 1, 124 \item {\tt Cube} theory, 1 - \item {\tt cut} theorem, 112 + \item {\tt cut} theorem, 115 \item {\tt cut_facts_tac}, 19 - \item {\tt cutL_tac}, \bold{114} - \item {\tt cutR_tac}, \bold{114} + \item {\tt cutL_tac}, \bold{117} + \item {\tt cutR_tac}, \bold{117} \indexspace - \item {\tt datatype}, 87--95 + \item {\tt datatype}, 89--97 \item {\tt Delsplits}, \bold{76} \item {\tt delsplits}, \bold{76} - \item {\tt diff_0_eq_0} theorem, 133 + \item {\tt diff_0_eq_0} theorem, 136 \item {\tt Diff_cancel} theorem, 42 \item {\tt Diff_contains} theorem, 37 \item {\tt Diff_def} theorem, 31 - \item {\tt diff_def} theorem, 48, 133 + \item {\tt diff_def} theorem, 48, 136 \item {\tt Diff_disjoint} theorem, 42 \item {\tt Diff_Int} theorem, 42 \item {\tt Diff_partition} theorem, 42 - \item {\tt diff_self_eq_0} theorem, 133 + \item {\tt diff_self_eq_0} theorem, 136 \item {\tt Diff_subset} theorem, 37 - \item {\tt diff_succ_succ} theorem, 133 - \item {\tt diff_typing} theorem, 133 + \item {\tt diff_succ_succ} theorem, 136 + \item {\tt diff_typing} theorem, 136 \item {\tt Diff_Un} theorem, 42 - \item {\tt diffC0} theorem, 133 + \item {\tt diffC0} theorem, 136 \item {\tt DiffD1} theorem, 36 \item {\tt DiffD2} theorem, 36 \item {\tt DiffE} theorem, 36 @@ -213,10 +213,10 @@ \item {\tt disjE} theorem, 8, 65 \item {\tt disjI1} theorem, 8, 65 \item {\tt disjI2} theorem, 8, 65 - \item {\tt disjL} theorem, 112 - \item {\tt disjR} theorem, 112 - \item {\tt div} symbol, 48, 79, 133 - \item {\tt div_def} theorem, 48, 133 + \item {\tt disjL} theorem, 115 + \item {\tt disjR} theorem, 115 + \item {\tt div} symbol, 48, 79, 136 + \item {\tt div_def} theorem, 48, 136 \item {\tt div_geq} theorem, 80 \item {\tt div_less} theorem, 80 \item {\tt Divides} theory, 80 @@ -234,28 +234,28 @@ \indexspace - \item {\tt Elem} constant, 122 - \item {\tt elim_rls}, \bold{129} - \item {\tt elimL_rls}, \bold{129} + \item {\tt Elem} constant, 125 + \item {\tt elim_rls}, \bold{132} + \item {\tt elimL_rls}, \bold{132} \item {\tt empty_def} theorem, 71 - \item {\tt empty_pack}, \bold{115} + \item {\tt empty_pack}, \bold{118} \item {\tt empty_subsetI} theorem, 34 \item {\tt emptyE} theorem, 34, 73 \item {\tt Eps} constant, 60, 62 - \item {\tt Eq} constant, 122 - \item {\tt eq} constant, 122, 127 + \item {\tt Eq} constant, 125 + \item {\tt eq} constant, 125, 130 \item {\tt eq_mp_tac}, \bold{10} - \item {\tt EqC} theorem, 128 - \item {\tt EqE} theorem, 128 - \item {\tt Eqelem} constant, 122 - \item {\tt EqF} theorem, 128 - \item {\tt EqFL} theorem, 128 - \item {\tt EqI} theorem, 128 - \item {\tt Eqtype} constant, 122 - \item {\tt equal_tac}, \bold{130} - \item {\tt equal_types} theorem, 125 - \item {\tt equal_typesL} theorem, 125 - \item {\tt equalityCE} theorem, 70, 72, 107, 108 + \item {\tt EqC} theorem, 131 + \item {\tt EqE} theorem, 131 + \item {\tt Eqelem} constant, 125 + \item {\tt EqF} theorem, 131 + \item {\tt EqFL} theorem, 131 + \item {\tt EqI} theorem, 131 + \item {\tt Eqtype} constant, 125 + \item {\tt equal_tac}, \bold{133} + \item {\tt equal_types} theorem, 128 + \item {\tt equal_typesL} theorem, 128 + \item {\tt equalityCE} theorem, 70, 72, 110, 111 \item {\tt equalityD1} theorem, 34, 72 \item {\tt equalityD2} theorem, 34, 72 \item {\tt equalityE} theorem, 34, 72 @@ -264,8 +264,8 @@ \item {\tt equals0I} theorem, 34 \item {\tt eresolve_tac}, 16 \item {\tt eta} theorem, 40, 41 - \item {\tt EX} symbol, 7, 27, 60, 62, 69, 70, 110 - \item {\tt Ex} constant, 7, 60, 110 + \item {\tt EX} symbol, 7, 27, 60, 62, 69, 70, 113 + \item {\tt Ex} constant, 7, 60, 113 \item {\tt EX!} symbol, 7, 60 \item {\tt Ex1} constant, 7, 60 \item {\tt Ex1_def} theorem, 64 @@ -277,26 +277,26 @@ \item {\tt exCI} theorem, 11, 15, 66 \item {\tt excluded_middle} theorem, 11, 66 \item {\tt exE} theorem, 8, 66 - \item {\tt exhaust_tac}, \bold{92} + \item {\tt exhaust_tac}, \bold{93} \item {\tt exI} theorem, 8, 66 - \item {\tt exL} theorem, 112 - \item {\tt Exp} theory, 106 - \item {\tt exR} theorem, 112, 116, 117 - \item {\tt exR_thin} theorem, 113, 117, 118 + \item {\tt exL} theorem, 115 + \item {\tt Exp} theory, 108 + \item {\tt exR} theorem, 115, 119, 120 + \item {\tt exR_thin} theorem, 116, 120, 121 \item {\tt ext} theorem, 63, 64 \item {\tt extension} theorem, 31 \indexspace - \item {\tt F} constant, 122 - \item {\tt False} constant, 7, 60, 110 + \item {\tt F} constant, 125 + \item {\tt False} constant, 7, 60, 113 \item {\tt False_def} theorem, 64 \item {\tt FalseE} theorem, 8, 65 - \item {\tt FalseL} theorem, 112 - \item {\tt fast_tac}, \bold{117} - \item {\tt FE} theorem, 128, 132 - \item {\tt FEL} theorem, 128 - \item {\tt FF} theorem, 128 + \item {\tt FalseL} theorem, 115 + \item {\tt fast_tac}, \bold{120} + \item {\tt FE} theorem, 131, 135 + \item {\tt FEL} theorem, 131 + \item {\tt FF} theorem, 131 \item {\tt field} constant, 26 \item {\tt field_def} theorem, 32 \item {\tt field_subset} theorem, 39 @@ -304,8 +304,8 @@ \item {\tt fieldE} theorem, 39 \item {\tt fieldI1} theorem, 39 \item {\tt fieldI2} theorem, 39 - \item {\tt filseq_resolve_tac}, \bold{115} - \item {\tt filt_resolve_tac}, 115, 130 + \item {\tt filseq_resolve_tac}, \bold{118} + \item {\tt filt_resolve_tac}, 118, 133 \item {\tt filter} constant, 82 \item {\tt Fin.consI} theorem, 49 \item {\tt Fin.emptyI} theorem, 49 @@ -318,18 +318,18 @@ \item {\tt Fixedpt} theory, 43 \item {\tt flat} constant, 50 \item {\tt flat_def} theorem, 50 - \item flex-flex constraints, 111 - \item {\tt FOL} theory, 1, 5, 11, 131 + \item flex-flex constraints, 114 + \item {\tt FOL} theory, 1, 5, 11, 134 \item {\tt FOL_cs}, \bold{11} \item {\tt FOL_ss}, \bold{6} \item {\tt foldl} constant, 82 - \item {\tt form_rls}, \bold{129} - \item {\tt formL_rls}, \bold{129} - \item {\tt forms_of_seq}, \bold{114} + \item {\tt form_rls}, \bold{132} + \item {\tt formL_rls}, \bold{132} + \item {\tt forms_of_seq}, \bold{117} \item {\tt foundation} theorem, 31 - \item {\tt fst} constant, 26, 33, 77, 122, 127 + \item {\tt fst} constant, 26, 33, 77, 125, 130 \item {\tt fst_conv} theorem, 38, 77 - \item {\tt fst_def} theorem, 32, 127 + \item {\tt fst_def} theorem, 32, 130 \item {\tt Fun} theory, 75 \item {\textit {fun}} type, 61 \item {\tt fun_cong} theorem, 65 @@ -341,7 +341,7 @@ \item {\tt fun_is_rel} theorem, 40 \item {\tt fun_single} theorem, 41 \item function applications - \subitem in \CTT, 124 + \subitem in \CTT, 127 \subitem in \ZF, 26 \indexspace @@ -356,8 +356,8 @@ \indexspace - \item {\tt hd} constant, 82, 99 - \item higher-order logic, 59--108 + \item {\tt hd} constant, 82, 102 + \item higher-order logic, 59--111 \item {\tt HOL} theory, 1, 59 \item {\sc hol} system, 59, 62 \item {\tt HOL_basic_ss}, \bold{75} @@ -365,12 +365,12 @@ \item {\tt HOL_quantifiers}, \bold{62}, 70 \item {\tt HOL_ss}, \bold{75} \item {\tt HOLCF} theory, 1 - \item {\tt hyp_rew_tac}, \bold{131} + \item {\tt hyp_rew_tac}, \bold{134} \item {\tt hyp_subst_tac}, 6, 75 \indexspace - \item {\textit {i}} type, 25, 121 + \item {\textit {i}} type, 25, 124 \item {\tt id} constant, 46 \item {\tt id_def} theorem, 46 \item {\tt If} constant, 60 @@ -380,15 +380,15 @@ \item {\tt if_P} theorem, 36, 66 \item {\tt ifE} theorem, 19 \item {\tt iff} theorem, 63, 64 - \item {\tt iff_def} theorem, 8, 112 + \item {\tt iff_def} theorem, 8, 115 \item {\tt iff_impE} theorem, 9 \item {\tt iffCE} theorem, 11, 66, 70 \item {\tt iffD1} theorem, 9, 65 \item {\tt iffD2} theorem, 9, 65 \item {\tt iffE} theorem, 9, 65 \item {\tt iffI} theorem, 9, 19, 65 - \item {\tt iffL} theorem, 113, 119 - \item {\tt iffR} theorem, 113 + \item {\tt iffL} theorem, 116, 122 + \item {\tt iffR} theorem, 116 \item {\tt ifI} theorem, 19 \item {\tt IFOL} theory, 5 \item {\tt IFOL_ss}, \bold{6} @@ -399,13 +399,13 @@ \item {\tt impCE} theorem, 11, 66 \item {\tt impE} theorem, 9, 10, 65 \item {\tt impI} theorem, 8, 63 - \item {\tt impL} theorem, 112 - \item {\tt impR} theorem, 112 + \item {\tt impL} theorem, 115 + \item {\tt impR} theorem, 115 \item {\tt in} symbol, 28, 61 \item {\textit {ind}} type, 78 \item {\tt induct} theorem, 45 - \item {\tt induct_tac}, 80, \bold{92} - \item {\tt inductive}, 102--105 + \item {\tt induct_tac}, 80, \bold{93} + \item {\tt inductive}, 104--107 \item {\tt Inf} constant, 26, 30 \item {\tt infinity} theorem, 32 \item {\tt inj} constant, 46, 75 @@ -417,13 +417,13 @@ \item {\tt inj_on_def} theorem, 75 \item {\tt inj_Suc} theorem, 79 \item {\tt Inl} constant, 44, 79 - \item {\tt inl} constant, 122, 127, 137 + \item {\tt inl} constant, 125, 130, 140 \item {\tt Inl_def} theorem, 44 \item {\tt Inl_inject} theorem, 44 \item {\tt Inl_neq_Inr} theorem, 44 \item {\tt Inl_not_Inr} theorem, 79 \item {\tt Inr} constant, 44, 79 - \item {\tt inr} constant, 122, 127 + \item {\tt inr} constant, 125, 130 \item {\tt Inr_def} theorem, 44 \item {\tt Inr_inject} theorem, 44 \item {\tt insert} constant, 68 @@ -469,21 +469,21 @@ \item {\tt IntPr.safe_step_tac}, \bold{10} \item {\tt IntPr.safe_tac}, \bold{10} \item {\tt IntPr.step_tac}, \bold{10} - \item {\tt intr_rls}, \bold{129} - \item {\tt intr_tac}, \bold{130}, 139, 140 - \item {\tt intrL_rls}, \bold{129} + \item {\tt intr_rls}, \bold{132} + \item {\tt intr_tac}, \bold{133}, 142, 143 + \item {\tt intrL_rls}, \bold{132} \item {\tt inv} constant, 75 \item {\tt inv_def} theorem, 75 \indexspace - \item {\tt lam} symbol, 27, 29, 124 + \item {\tt lam} symbol, 27, 29, 127 \item {\tt lam_def} theorem, 32 \item {\tt lam_type} theorem, 40 \item {\tt Lambda} constant, 26, 30 - \item {\tt lambda} constant, 122, 124 + \item {\tt lambda} constant, 125, 127 \item $\lambda$-abstractions - \subitem in \CTT, 124 + \subitem in \CTT, 127 \subitem in \ZF, 27 \item {\tt lamE} theorem, 40, 41 \item {\tt lamI} theorem, 40, 41 @@ -502,7 +502,7 @@ \item {\tt Let} constant, 25, 26, 60, 63 \item {\tt let} symbol, 28, 61, 63 \item {\tt Let_def} theorem, 25, 31, 63, 64 - \item {\tt LFilter} theory, 106 + \item {\tt LFilter} theory, 108 \item {\tt lfp_def} theorem, 45 \item {\tt lfp_greatest} theorem, 45 \item {\tt lfp_lowerbound} theorem, 45 @@ -519,10 +519,10 @@ \item {\tt list_rec_Cons} theorem, 50 \item {\tt list_rec_def} theorem, 50 \item {\tt list_rec_Nil} theorem, 50 - \item {\tt LK} theory, 1, 109, 113 - \item {\tt LK_dup_pack}, \bold{116}, 117 - \item {\tt LK_pack}, \bold{116} - \item {\tt LList} theory, 106 + \item {\tt LK} theory, 1, 112, 116 + \item {\tt LK_dup_pack}, \bold{119}, 120 + \item {\tt LK_pack}, \bold{119} + \item {\tt LList} theory, 108 \item {\tt logic} class, 5 \indexspace @@ -541,29 +541,29 @@ \item {\tt mem_irrefl} theorem, 36 \item {\tt min} constant, 61, 80 \item {\tt minus} class, 61 - \item {\tt mod} symbol, 48, 79, 133 - \item {\tt mod_def} theorem, 48, 133 + \item {\tt mod} symbol, 48, 79, 136 + \item {\tt mod_def} theorem, 48, 136 \item {\tt mod_geq} theorem, 80 \item {\tt mod_less} theorem, 80 \item {\tt mod_quo_equality} theorem, 48 \item {\tt Modal} theory, 1 \item {\tt mono} constant, 61 \item {\tt mp} theorem, 8, 63 - \item {\tt mp_tac}, \bold{10}, \bold{131} + \item {\tt mp_tac}, \bold{10}, \bold{134} \item {\tt mult_0} theorem, 48 - \item {\tt mult_assoc} theorem, 48, 133 - \item {\tt mult_commute} theorem, 48, 133 - \item {\tt mult_def} theorem, 48, 133 + \item {\tt mult_assoc} theorem, 48, 136 + \item {\tt mult_commute} theorem, 48, 136 + \item {\tt mult_def} theorem, 48, 136 \item {\tt mult_succ} theorem, 48 \item {\tt mult_type} theorem, 48 - \item {\tt mult_typing} theorem, 133 - \item {\tt multC0} theorem, 133 - \item {\tt multC_succ} theorem, 133 - \item {\tt mutual_induct_tac}, \bold{92} + \item {\tt mult_typing} theorem, 136 + \item {\tt multC0} theorem, 136 + \item {\tt multC_succ} theorem, 136 + \item {\tt mutual_induct_tac}, \bold{93} \indexspace - \item {\tt N} constant, 122 + \item {\tt N} constant, 125 \item {\tt n_not_Suc_n} theorem, 79 \item {\tt Nat} theory, 47, 80 \item {\textit {nat}} type, 79, 80 @@ -579,32 +579,32 @@ \item {\tt nat_rec} constant, 80 \item {\tt nat_succI} theorem, 48 \item {\tt NatDef} theory, 78 - \item {\tt NC0} theorem, 126 - \item {\tt NC_succ} theorem, 126 - \item {\tt NE} theorem, 125, 126, 134 - \item {\tt NEL} theorem, 126 - \item {\tt NF} theorem, 126, 135 - \item {\tt NI0} theorem, 126 - \item {\tt NI_succ} theorem, 126 - \item {\tt NI_succL} theorem, 126 + \item {\tt NC0} theorem, 129 + \item {\tt NC_succ} theorem, 129 + \item {\tt NE} theorem, 128, 129, 137 + \item {\tt NEL} theorem, 129 + \item {\tt NF} theorem, 129, 138 + \item {\tt NI0} theorem, 129 + \item {\tt NI_succ} theorem, 129 + \item {\tt NI_succL} theorem, 129 \item {\tt Nil_Cons_iff} theorem, 50 \item {\tt NilI} theorem, 50 - \item {\tt NIO} theorem, 134 - \item {\tt Not} constant, 7, 60, 110 + \item {\tt NIO} theorem, 137 + \item {\tt Not} constant, 7, 60, 113 \item {\tt not_def} theorem, 8, 43, 64 \item {\tt not_impE} theorem, 9 \item {\tt not_sym} theorem, 65 \item {\tt notE} theorem, 9, 10, 65 \item {\tt notI} theorem, 9, 65 - \item {\tt notL} theorem, 112 + \item {\tt notL} theorem, 115 \item {\tt notnotD} theorem, 11, 66 - \item {\tt notR} theorem, 112 + \item {\tt notR} theorem, 115 \item {\tt null} constant, 82 \indexspace \item {\tt O} symbol, 46 - \item {\textit {o}} type, 5, 109 + \item {\textit {o}} type, 5, 112 \item {\tt o} symbol, 60, 71 \item {\tt o_def} theorem, 64 \item {\tt of} symbol, 63 @@ -615,9 +615,9 @@ \indexspace - \item {\tt pack} ML type, 115 + \item {\tt pack} ML type, 118 \item {\tt Pair} constant, 26, 27, 77 - \item {\tt pair} constant, 122 + \item {\tt pair} constant, 125 \item {\tt Pair_def} theorem, 32 \item {\tt Pair_eq} theorem, 77 \item {\tt Pair_inject} theorem, 38, 77 @@ -626,52 +626,52 @@ \item {\tt Pair_neq_0} theorem, 38 \item {\tt PairE} theorem, 77 \item {\tt pairing} theorem, 35 - \item {\tt pc_tac}, \bold{117}, \bold{132}, 138, 139 + \item {\tt pc_tac}, \bold{120}, \bold{135}, 141, 142 \item {\tt Perm} theory, 43 \item {\tt Pi} constant, 26, 29, 41 \item {\tt Pi_def} theorem, 32 \item {\tt Pi_type} theorem, 40, 41 \item {\tt plus} class, 61 - \item {\tt PlusC_inl} theorem, 128 - \item {\tt PlusC_inr} theorem, 128 - \item {\tt PlusE} theorem, 128, 132, 136 - \item {\tt PlusEL} theorem, 128 - \item {\tt PlusF} theorem, 128 - \item {\tt PlusFL} theorem, 128 - \item {\tt PlusI_inl} theorem, 128, 137 - \item {\tt PlusI_inlL} theorem, 128 - \item {\tt PlusI_inr} theorem, 128 - \item {\tt PlusI_inrL} theorem, 128 + \item {\tt PlusC_inl} theorem, 131 + \item {\tt PlusC_inr} theorem, 131 + \item {\tt PlusE} theorem, 131, 135, 139 + \item {\tt PlusEL} theorem, 131 + \item {\tt PlusF} theorem, 131 + \item {\tt PlusFL} theorem, 131 + \item {\tt PlusI_inl} theorem, 131, 140 + \item {\tt PlusI_inlL} theorem, 131 + \item {\tt PlusI_inr} theorem, 131 + \item {\tt PlusI_inrL} theorem, 131 \item {\tt Pow} constant, 26, 68 \item {\tt Pow_def} theorem, 71 \item {\tt Pow_iff} theorem, 31 \item {\tt Pow_mono} theorem, 53 \item {\tt PowD} theorem, 34, 54, 73 \item {\tt PowI} theorem, 34, 54, 73 - \item {\tt primrec}, 95--99 + \item {\tt primrec}, 98--101 \item {\tt primrec} symbol, 80 \item {\tt PrimReplace} constant, 26, 30 \item priorities, 2 - \item {\tt PROD} symbol, 27, 29, 123, 124 - \item {\tt Prod} constant, 122 + \item {\tt PROD} symbol, 27, 29, 126, 127 + \item {\tt Prod} constant, 125 \item {\tt Prod} theory, 77 - \item {\tt ProdC} theorem, 126, 142 - \item {\tt ProdC2} theorem, 126 - \item {\tt ProdE} theorem, 126, 139, 141, 143 - \item {\tt ProdEL} theorem, 126 - \item {\tt ProdF} theorem, 126 - \item {\tt ProdFL} theorem, 126 - \item {\tt ProdI} theorem, 126, 132, 134 - \item {\tt ProdIL} theorem, 126 + \item {\tt ProdC} theorem, 129, 145 + \item {\tt ProdC2} theorem, 129 + \item {\tt ProdE} theorem, 129, 142, 144, 146 + \item {\tt ProdEL} theorem, 129 + \item {\tt ProdF} theorem, 129 + \item {\tt ProdFL} theorem, 129 + \item {\tt ProdI} theorem, 129, 135, 137 + \item {\tt ProdIL} theorem, 129 \item {\tt prop_cs}, \bold{11}, \bold{76} - \item {\tt prop_pack}, \bold{115} + \item {\tt prop_pack}, \bold{118} \indexspace \item {\tt qcase_def} theorem, 44 \item {\tt qconverse} constant, 43 \item {\tt qconverse_def} theorem, 44 - \item {\tt qed_spec_mp}, 93 + \item {\tt qed_spec_mp}, 96 \item {\tt qfsplit_def} theorem, 44 \item {\tt QInl_def} theorem, 44 \item {\tt QInr_def} theorem, 44 @@ -686,43 +686,45 @@ \indexspace - \item {\tt range} constant, 26, 68, 107 + \item {\tt range} constant, 26, 68, 109 \item {\tt range_def} theorem, 32, 71 \item {\tt range_of_fun} theorem, 40, 41 \item {\tt range_subset} theorem, 39 \item {\tt range_type} theorem, 40 - \item {\tt rangeE} theorem, 39, 73, 107 + \item {\tt rangeE} theorem, 39, 73, 110 \item {\tt rangeI} theorem, 39, 73 \item {\tt rank} constant, 49 \item {\tt rank_ss}, \bold{24} - \item {\tt rec} constant, 48, 122, 125 + \item {\tt rec} constant, 48, 125, 128 \item {\tt rec_0} theorem, 48 \item {\tt rec_def} theorem, 48 \item {\tt rec_succ} theorem, 48 - \item {\tt recdef}, 99--102 + \item {\tt recdef}, 101--104 + \item {\tt record}, 87 + \item {\tt record_split_tac}, 89 \item recursion - \subitem general, 99--102 - \subitem primitive, 95--99 - \item recursive functions, \see{recursion}{95} - \item {\tt red_if_equal} theorem, 125 - \item {\tt Reduce} constant, 122, 125, 131 - \item {\tt refl} theorem, 8, 63, 112 - \item {\tt refl_elem} theorem, 125, 129 - \item {\tt refl_red} theorem, 125 - \item {\tt refl_type} theorem, 125, 129 - \item {\tt REPEAT_FIRST}, 130 - \item {\tt repeat_goal_tac}, \bold{117} + \subitem general, 101--104 + \subitem primitive, 98--101 + \item recursive functions, \see{recursion}{97} + \item {\tt red_if_equal} theorem, 128 + \item {\tt Reduce} constant, 125, 128, 134 + \item {\tt refl} theorem, 8, 63, 115 + \item {\tt refl_elem} theorem, 128, 132 + \item {\tt refl_red} theorem, 128 + \item {\tt refl_type} theorem, 128, 132 + \item {\tt REPEAT_FIRST}, 133 + \item {\tt repeat_goal_tac}, \bold{120} \item {\tt RepFun} constant, 26, 29, 30, 33 \item {\tt RepFun_def} theorem, 31 \item {\tt RepFunE} theorem, 35 \item {\tt RepFunI} theorem, 35 \item {\tt Replace} constant, 26, 29, 30, 33 \item {\tt Replace_def} theorem, 31 - \item {\tt replace_type} theorem, 129, 141 + \item {\tt replace_type} theorem, 132, 144 \item {\tt ReplaceE} theorem, 35 \item {\tt ReplaceI} theorem, 35 \item {\tt replacement} theorem, 31 - \item {\tt reresolve_tac}, \bold{117} + \item {\tt reresolve_tac}, \bold{120} \item {\tt res_inst_tac}, 62 \item {\tt restrict} constant, 26, 33 \item {\tt restrict} theorem, 40 @@ -731,31 +733,31 @@ \item {\tt restrict_type} theorem, 40 \item {\tt rev} constant, 50, 82 \item {\tt rev_def} theorem, 50 - \item {\tt rew_tac}, 19, \bold{131} + \item {\tt rew_tac}, 19, \bold{134} \item {\tt rewrite_rule}, 19 \item {\tt right_comp_id} theorem, 46 \item {\tt right_comp_inverse} theorem, 46 \item {\tt right_inverse} theorem, 46 - \item {\tt RL}, 136 - \item {\tt RS}, 141, 143 + \item {\tt RL}, 139 + \item {\tt RS}, 144, 146 \indexspace - \item {\tt safe_goal_tac}, \bold{117} - \item {\tt safe_tac}, \bold{132} - \item {\tt safestep_tac}, \bold{132} + \item {\tt safe_goal_tac}, \bold{120} + \item {\tt safe_tac}, \bold{135} + \item {\tt safestep_tac}, \bold{135} \item search - \subitem best-first, 108 + \subitem best-first, 111 \item {\tt select_equality} theorem, 64, 66 \item {\tt selectI} theorem, 63, 64 \item {\tt separation} theorem, 35 - \item {\tt Seqof} constant, 110 - \item sequent calculus, 109--120 + \item {\tt Seqof} constant, 113 + \item sequent calculus, 112--123 \item {\tt Set} theory, 67, 70 \item {\tt set} constant, 82 \item {\tt set} type, 67 \item set theory, 24--58 - \item {\tt set_current_thy}, 108 + \item {\tt set_current_thy}, 111 \item {\tt set_diff_def} theorem, 71 \item {\tt show_sorts}, 62 \item {\tt show_types}, 62 @@ -768,13 +770,13 @@ \subitem of conjunctions, 6, 75 \item {\tt singletonE} theorem, 36 \item {\tt singletonI} theorem, 36 - \item {\tt size} constant, 90 - \item {\tt snd} constant, 26, 33, 77, 122, 127 + \item {\tt size} constant, 93 + \item {\tt snd} constant, 26, 33, 77, 125, 130 \item {\tt snd_conv} theorem, 38, 77 - \item {\tt snd_def} theorem, 32, 127 - \item {\tt sobj} type, 113 + \item {\tt snd_def} theorem, 32, 130 + \item {\tt sobj} type, 116 \item {\tt spec} theorem, 8, 66 - \item {\tt split} constant, 26, 33, 77, 122, 136 + \item {\tt split} constant, 26, 33, 77, 125, 139 \item {\tt split} theorem, 38, 77 \item {\tt split_all_tac}, \bold{78} \item {\tt split_def} theorem, 32 @@ -785,7 +787,7 @@ \item {\tt ssubst} theorem, 9, 65, 67 \item {\tt stac}, \bold{75} \item {\tt Step_tac}, 22 - \item {\tt step_tac}, 23, \bold{117}, \bold{132} + \item {\tt step_tac}, 23, \bold{120}, \bold{135} \item {\tt strip_tac}, \bold{67} \item {\tt subset_def} theorem, 31, 71 \item {\tt subset_refl} theorem, 34, 72 @@ -794,15 +796,15 @@ \item {\tt subsetD} theorem, 34, 56, 70, 72 \item {\tt subsetI} theorem, 34, 54, 55, 72 \item {\tt subst} theorem, 8, 63 - \item {\tt subst_elem} theorem, 125 - \item {\tt subst_elemL} theorem, 125 - \item {\tt subst_eqtyparg} theorem, 129, 141 - \item {\tt subst_prodE} theorem, 127, 129 - \item {\tt subst_type} theorem, 125 - \item {\tt subst_typeL} theorem, 125 + \item {\tt subst_elem} theorem, 128 + \item {\tt subst_elemL} theorem, 128 + \item {\tt subst_eqtyparg} theorem, 132, 144 + \item {\tt subst_prodE} theorem, 130, 132 + \item {\tt subst_type} theorem, 128 + \item {\tt subst_typeL} theorem, 128 \item {\tt Suc} constant, 79 \item {\tt Suc_not_Zero} theorem, 79 - \item {\tt succ} constant, 26, 30, 122 + \item {\tt succ} constant, 26, 30, 125 \item {\tt succ_def} theorem, 32 \item {\tt succ_inject} theorem, 36 \item {\tt succ_neq_0} theorem, 36 @@ -810,8 +812,8 @@ \item {\tt succE} theorem, 36 \item {\tt succI1} theorem, 36 \item {\tt succI2} theorem, 36 - \item {\tt SUM} symbol, 27, 29, 123, 124 - \item {\tt Sum} constant, 122 + \item {\tt SUM} symbol, 27, 29, 126, 127 + \item {\tt Sum} constant, 125 \item {\tt Sum} theory, 43, 78 \item {\tt sum_case} constant, 79 \item {\tt sum_case_Inl} theorem, 79 @@ -823,69 +825,69 @@ \item {\tt SUM_Int_distrib2} theorem, 42 \item {\tt SUM_Un_distrib1} theorem, 42 \item {\tt SUM_Un_distrib2} theorem, 42 - \item {\tt SumC} theorem, 127 - \item {\tt SumE} theorem, 127, 132, 136 + \item {\tt SumC} theorem, 130 + \item {\tt SumE} theorem, 130, 135, 139 \item {\tt sumE} theorem, 79 \item {\tt sumE2} theorem, 44 - \item {\tt SumE_fst} theorem, 127, 129, 141, 142 - \item {\tt SumE_snd} theorem, 127, 129, 143 - \item {\tt SumEL} theorem, 127 - \item {\tt SumF} theorem, 127 - \item {\tt SumFL} theorem, 127 - \item {\tt SumI} theorem, 127, 137 - \item {\tt SumIL} theorem, 127 - \item {\tt SumIL2} theorem, 129 + \item {\tt SumE_fst} theorem, 130, 132, 144, 145 + \item {\tt SumE_snd} theorem, 130, 132, 146 + \item {\tt SumEL} theorem, 130 + \item {\tt SumF} theorem, 130 + \item {\tt SumFL} theorem, 130 + \item {\tt SumI} theorem, 130, 140 + \item {\tt SumIL} theorem, 130 + \item {\tt SumIL2} theorem, 132 \item {\tt surj} constant, 46, 71, 75 \item {\tt surj_def} theorem, 46, 75 \item {\tt surjective_pairing} theorem, 77 \item {\tt surjective_sum} theorem, 79 \item {\tt swap} theorem, 11, 66 - \item {\tt swap_res_tac}, 16, 108 - \item {\tt sym} theorem, 9, 65, 112 - \item {\tt sym_elem} theorem, 125 - \item {\tt sym_type} theorem, 125 - \item {\tt symL} theorem, 113 + \item {\tt swap_res_tac}, 16, 111 + \item {\tt sym} theorem, 9, 65, 115 + \item {\tt sym_elem} theorem, 128 + \item {\tt sym_type} theorem, 128 + \item {\tt symL} theorem, 116 \indexspace - \item {\tt T} constant, 122 - \item {\textit {t}} type, 121 + \item {\tt T} constant, 125 + \item {\textit {t}} type, 124 \item {\tt take} constant, 82 \item {\tt takeWhile} constant, 82 - \item {\tt TC} theorem, 128 - \item {\tt TE} theorem, 128 - \item {\tt TEL} theorem, 128 - \item {\tt term} class, 5, 61, 109 - \item {\tt test_assume_tac}, \bold{130} - \item {\tt TF} theorem, 128 - \item {\tt THE} symbol, 27, 29, 37, 110 - \item {\tt The} constant, 26, 29, 30, 110 - \item {\tt The} theorem, 112 + \item {\tt TC} theorem, 131 + \item {\tt TE} theorem, 131 + \item {\tt TEL} theorem, 131 + \item {\tt term} class, 5, 61, 112 + \item {\tt test_assume_tac}, \bold{133} + \item {\tt TF} theorem, 131 + \item {\tt THE} symbol, 27, 29, 37, 113 + \item {\tt The} constant, 26, 29, 30, 113 + \item {\tt The} theorem, 115 \item {\tt the_def} theorem, 31 \item {\tt the_equality} theorem, 36, 37 \item {\tt theI} theorem, 36, 37 - \item {\tt thinL} theorem, 112 - \item {\tt thinR} theorem, 112 - \item {\tt TI} theorem, 128 + \item {\tt thinL} theorem, 115 + \item {\tt thinR} theorem, 115 + \item {\tt TI} theorem, 131 \item {\tt times} class, 61 \item {\tt tl} constant, 82 \item tracing \subitem of unification, 62 - \item {\tt trans} theorem, 9, 65, 112 - \item {\tt trans_elem} theorem, 125 - \item {\tt trans_red} theorem, 125 + \item {\tt trans} theorem, 9, 65, 115 + \item {\tt trans_elem} theorem, 128 + \item {\tt trans_red} theorem, 128 \item {\tt trans_tac}, 81 - \item {\tt trans_type} theorem, 125 - \item {\tt True} constant, 7, 60, 110 - \item {\tt True_def} theorem, 8, 64, 112 + \item {\tt trans_type} theorem, 128 + \item {\tt True} constant, 7, 60, 113 + \item {\tt True_def} theorem, 8, 64, 115 \item {\tt True_or_False} theorem, 63, 64 \item {\tt TrueI} theorem, 9, 65 - \item {\tt Trueprop} constant, 7, 60, 110 - \item {\tt TrueR} theorem, 113 - \item {\tt tt} constant, 122 - \item {\tt Type} constant, 122 + \item {\tt Trueprop} constant, 7, 60, 113 + \item {\tt TrueR} theorem, 116 + \item {\tt tt} constant, 125 + \item {\tt Type} constant, 125 \item type definition, \bold{84} - \item {\tt typechk_tac}, \bold{130}, 135, 138, 142, 143 + \item {\tt typechk_tac}, \bold{133}, 138, 141, 145, 146 \item {\tt typedef}, 81 \indexspace @@ -942,7 +944,7 @@ \indexspace - \item {\tt when} constant, 122, 127, 136 + \item {\tt when} constant, 125, 130, 139 \indexspace @@ -950,7 +952,7 @@ \indexspace - \item {\tt zero_ne_succ} theorem, 125, 126 + \item {\tt zero_ne_succ} theorem, 128, 129 \item {\tt ZF} theory, 1, 24, 59 \item {\tt ZF_cs}, \bold{24} \item {\tt ZF_ss}, \bold{24}