# HG changeset patch # User paulson # Date 1622209386 -3600 # Node ID 370ce138d1bd51c65c919c30a2d47e0e4972ef1f # Parent 493b1ae188dadd3c43a5b6d66c1c99f6cccf10f9 nicer statement of Liouville_theorem diff -r 493b1ae188da -r 370ce138d1bd src/HOL/Complex_Analysis/Cauchy_Integral_Formula.thy --- a/src/HOL/Complex_Analysis/Cauchy_Integral_Formula.thy Wed May 26 18:07:49 2021 +0200 +++ b/src/HOL/Complex_Analysis/Cauchy_Integral_Formula.thy Fri May 28 14:43:06 2021 +0100 @@ -2482,12 +2482,13 @@ theorem Liouville_theorem: assumes holf: "f holomorphic_on UNIV" and bf: "bounded (range f)" - obtains c where "\z. f z = c" + shows "f constant_on UNIV" proof - obtain B where "\z. cmod (f z) \ B" by (meson bf bounded_pos rangeI) then show ?thesis - using Liouville_polynomial [OF holf, of 0 B 0, simplified] that by blast + using Liouville_polynomial [OF holf, of 0 B 0, simplified] + by (meson constant_on_def) qed text\A holomorphic function f has only isolated zeros unless f is 0.\