# HG changeset patch # User huffman # Date 1181147525 -7200 # Node ID 375335bf619f8d90bbacd1b6f799e4caf17ee701 # Parent aa158e145ea395c836fdcc38d2041c88671e552a clean up proofs of exp_zero, sin_zero, cos_zero diff -r aa158e145ea3 -r 375335bf619f src/HOL/Hyperreal/Transcendental.thy --- a/src/HOL/Hyperreal/Transcendental.thy Wed Jun 06 17:01:33 2007 +0200 +++ b/src/HOL/Hyperreal/Transcendental.thy Wed Jun 06 18:32:05 2007 +0200 @@ -659,14 +659,18 @@ subsection{*Properties of the Exponential Function*} -lemma exp_zero [simp]: "exp 0 = 1" +lemma powser_zero: + fixes f :: "nat \ 'a::{real_normed_algebra_1,recpower}" + shows "(\n. f n * 0 ^ n) = f 0" proof - - have "(\n = 0..<1. (0::'a) ^ n /# real (fact n)) = - (\n. 0 ^ n /# real (fact n))" + have "(\n = 0..<1. f n * 0 ^ n) = (\n. f n * 0 ^ n)" by (rule sums_unique [OF series_zero], simp add: power_0_left) - thus ?thesis by (simp add: exp_def) + thus ?thesis by simp qed +lemma exp_zero [simp]: "exp 0 = 1" +unfolding exp_def by (simp add: scaleR_conv_of_real powser_zero) + lemma setsum_head2: "m \ n \ setsum f {m..n} = f m + setsum f {Suc m..n}" by (simp add: setsum_head atLeastSucAtMost_greaterThanAtMost) @@ -997,19 +1001,10 @@ subsection{*Basic Properties of the Trigonometric Functions*} lemma sin_zero [simp]: "sin 0 = 0" -by (auto intro!: sums_unique [symmetric] LIMSEQ_const - simp add: sin_def sums_def lemma_STAR_sin) - -lemma lemma_series_zero2: - "(\m. n \ m --> f m = 0) --> f sums setsum f {0.. cos(x) * sin(x) + cos(x) * sin(x)"