# HG changeset patch # User nipkow # Date 988983578 -7200 # Node ID 3826c51d980e8ef690e833c50b81be0fa7e6836e # Parent 981ea92a86dd603593715e02cd966e366b841531 *** empty log message *** diff -r 981ea92a86dd -r 3826c51d980e doc-src/TutorialI/Advanced/Partial.thy --- a/doc-src/TutorialI/Advanced/Partial.thy Fri May 04 15:38:48 2001 +0200 +++ b/doc-src/TutorialI/Advanced/Partial.thy Fri May 04 15:39:38 2001 +0200 @@ -95,7 +95,7 @@ "find(f,x) = (if wf(step1 f) then if f x = x then x else find(f, f x) else arbitrary)" -(hints recdef_simp:same_fst_def step1_def) +(hints recdef_simp: step1_def) text{*\noindent The recursion equation itself should be clear enough: it is our aborted @@ -115,8 +115,8 @@ well-foundedness of the relation given to \isacommand{recdef} is immediate. Furthermore, each recursive call descends along that relation: the first argument stays unchanged and the second one descends along @{term"step1 -f"}. The proof merely requires unfolding of some definitions, as specified in -the \isacommand{hints} above. +f"}. The proof requires unfolding the definition of @{term step1}, +as specified in the \isacommand{hints} above. Normally you will then derive the following conditional variant of and from the recursion equation diff -r 981ea92a86dd -r 3826c51d980e doc-src/TutorialI/Advanced/document/Partial.tex --- a/doc-src/TutorialI/Advanced/document/Partial.tex Fri May 04 15:38:48 2001 +0200 +++ b/doc-src/TutorialI/Advanced/document/Partial.tex Fri May 04 15:39:38 2001 +0200 @@ -98,7 +98,7 @@ \ \ {\isachardoublequote}find{\isacharparenleft}f{\isacharcomma}x{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}if\ wf{\isacharparenleft}step{\isadigit{1}}\ f{\isacharparenright}\isanewline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ then\ if\ f\ x\ {\isacharequal}\ x\ then\ x\ else\ find{\isacharparenleft}f{\isacharcomma}\ f\ x{\isacharparenright}\isanewline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ else\ arbitrary{\isacharparenright}{\isachardoublequote}\isanewline -{\isacharparenleft}\isakeyword{hints}\ recdef{\isacharunderscore}simp{\isacharcolon}same{\isacharunderscore}fst{\isacharunderscore}def\ step{\isadigit{1}}{\isacharunderscore}def{\isacharparenright}% +{\isacharparenleft}\isakeyword{hints}\ recdef{\isacharunderscore}simp{\isacharcolon}\ step{\isadigit{1}}{\isacharunderscore}def{\isacharparenright}% \begin{isamarkuptext}% \noindent The recursion equation itself should be clear enough: it is our aborted @@ -123,8 +123,8 @@ is known to the well-foundedness prover of \isacommand{recdef}. Thus well-foundedness of the relation given to \isacommand{recdef} is immediate. Furthermore, each recursive call descends along that relation: the first -argument stays unchanged and the second one descends along \isa{step{\isadigit{1}}\ f}. The proof merely requires unfolding of some definitions, as specified in -the \isacommand{hints} above. +argument stays unchanged and the second one descends along \isa{step{\isadigit{1}}\ f}. The proof requires unfolding the definition of \isa{step{\isadigit{1}}}, +as specified in the \isacommand{hints} above. Normally you will then derive the following conditional variant of and from the recursion equation%