# HG changeset patch # User haftmann # Date 1535142134 0 # Node ID 3974935e0252d0bf411d5f9d7bc960218025706a # Parent c898c2b1fd5893251f20709f6fc6a9718b976714 some modernization of notation diff -r c898c2b1fd58 -r 3974935e0252 src/HOL/Complete_Lattices.thy --- a/src/HOL/Complete_Lattices.thy Fri Aug 24 20:22:10 2018 +0000 +++ b/src/HOL/Complete_Lattices.thy Fri Aug 24 20:22:14 2018 +0000 @@ -604,7 +604,7 @@ unfolding Inf_less_iff . qed (auto elim!: allE[of _ "\A"] simp add: not_le[symmetric] Inf_lower) -lemma INF_le_iff: "INFIMUM A f \ x \ (\y>x. \i\A. y > f i)" +lemma INF_le_iff: "\(f ` A) \ x \ (\y>x. \i\A. y > f i)" using Inf_le_iff [of "f ` A"] by simp lemma le_Sup_iff: "x \ \A \ (\ya\A. y < a)" @@ -616,7 +616,7 @@ unfolding less_Sup_iff . qed (auto elim!: allE[of _ "\A"] simp add: not_le[symmetric] Sup_upper) -lemma le_SUP_iff: "x \ SUPREMUM A f \ (\yi\A. y < f i)" +lemma le_SUP_iff: "x \ \(f ` A) \ (\yi\A. y < f i)" using le_Sup_iff [of _ "f ` A"] by simp end @@ -641,10 +641,10 @@ lemma True_in_image_Bex [simp]: "True \ P ` A \ Bex A P" by auto -lemma INF_bool_eq [simp]: "INFIMUM = Ball" +lemma INF_bool_eq [simp]: "(\A f. \(f ` A)) = Ball" by (simp add: fun_eq_iff) -lemma SUP_bool_eq [simp]: "SUPREMUM = Bex" +lemma SUP_bool_eq [simp]: "(\A f. \(f ` A)) = Bex" by (simp add: fun_eq_iff) instance bool :: complete_boolean_algebra diff -r c898c2b1fd58 -r 3974935e0252 src/HOL/Hilbert_Choice.thy --- a/src/HOL/Hilbert_Choice.thy Fri Aug 24 20:22:10 2018 +0000 +++ b/src/HOL/Hilbert_Choice.thy Fri Aug 24 20:22:14 2018 +0000 @@ -943,21 +943,21 @@ apply (fact dual_complete_lattice) by (simp add: class.complete_distrib_lattice_axioms_def Sup_Inf) -lemma sup_Inf: "a \ Inf B = (INF b:B. a \ b)" +lemma sup_Inf: "a \ \B = \((\) a ` B)" proof (rule antisym) - show "a \ Inf B \ (INF b:B. a \ b)" + show "a \ \B \ \((\) a ` B)" apply (rule INF_greatest) using Inf_lower sup.mono by fastforce next - have "(INF b:B. a \ b) \ INFIMUM {{f {a}, f B} |f. f {a} = a \ f B \ B} Sup" + have "\((\) a ` B) \ \(Sup ` {{f {a}, f B} |f. f {a} = a \ f B \ B})" by (rule INF_greatest, auto simp add: INF_lower) also have "... = SUPREMUM {{a}, B} Inf" by (unfold Sup_Inf, simp) - finally show "(INF b:B. a \ b) \ a \ Inf B" + finally show "\((\) a ` B) \ a \ \B" by simp qed -lemma inf_Sup: "a \ Sup B = (SUP b:B. a \ b)" +lemma inf_Sup: "a \ \B = \((\) a ` B)" using dual_complete_distrib_lattice by (rule complete_distrib_lattice.sup_Inf) @@ -981,27 +981,29 @@ fix f assume A: "\Y. (\y. Y = {uu. \x. uu = P x y}) \ f Y \ Y" - have "(INF x:{uu. \y. uu = {uu. \x. uu = P x y}}. f x) \ (INF y. P ((\ y. SOME x . f ({P x y | x. True}) = P x y) y) y)" + have " \(f ` {uu. \y. uu = {uu. \x. uu = P x y}}) \ + (\y. P (SOME x. f {P x y |x. True} = P x y) y)" proof (rule INF_greatest, clarsimp) fix y - have "(INF x:{uu. \y. uu = {uu. \x. uu = P x y}}. f x) \ f {uu. \x. uu = P x y}" + have "(INF x\{uu. \y. uu = {uu. \x. uu = P x y}}. f x) \ f {uu. \x. uu = P x y}" by (rule INF_lower, blast) also have "... \ P (SOME x. f {uu . \x. uu = P x y} = P x y) y" apply (rule someI2_ex) using A by auto - finally show "(INF x:{uu. \y. uu = {uu. \x. uu = P x y}}. f x) \ P (SOME x. f {uu . \x. uu = P x y} = P x y) y" + finally show "\(f ` {uu. \y. uu = {uu. \x. uu = P x y}}) \ + P (SOME x. f {uu. \x. uu = P x y} = P x y) y" by simp qed also have "... \ (SUP x. INF y. P (x y) y)" by (rule SUP_upper, simp) - finally show "(INF x:{uu. \y. uu = {uu. \x. uu = P x y}}. f x) \ (SUP x. INF y. P (x y) y)" + finally show "\(f ` {uu. \y. uu = {uu. \x. uu = P x y}}) \ (\x. \y. P (x y) y)" by simp qed finally show "(INF y. SUP x. P x y) \ (SUP x. INF y. P (x y) y)" by simp qed -lemma INF_SUP_set: "(INF x:A. SUP a:x. (g a)) = (SUP x:{f ` A |f. \Y\A. f Y \ Y}. INF a:x. g a)" +lemma INF_SUP_set: "(\x\A. \(g ` x)) = (\x\{f ` A |f. \Y\A. f Y \ Y}. \(g ` x))" proof (rule antisym) have [simp]: "\f xa. \Y\A. f Y \ Y \ xa \ A \ (\x\A. g (f x)) \ g (f xa)" by (rule INF_lower2, blast+) @@ -1063,7 +1065,7 @@ using dual_complete_distrib_lattice by (rule complete_distrib_lattice.INF_SUP) -lemma SUP_INF_set: "(SUP x:A. INF a:x. (g a)) = (INF x:{f ` A |f. \Y\A. f Y \ Y}. SUP a:x. g a)" +lemma SUP_INF_set: "(\x\A. \(g ` x)) = (\x\{f ` A |f. \Y\A. f Y \ Y}. \(g ` x))" using dual_complete_distrib_lattice by (rule complete_distrib_lattice.INF_SUP_set) @@ -1118,7 +1120,7 @@ -instantiation "set" :: (type) complete_distrib_lattice +instantiation set :: (type) complete_distrib_lattice begin instance proof (standard, clarsimp) fix A :: "(('a set) set) set" @@ -1143,7 +1145,7 @@ qed end -instance "set" :: (type) complete_boolean_algebra .. +instance set :: (type) complete_boolean_algebra .. instantiation "fun" :: (type, complete_distrib_lattice) complete_distrib_lattice begin diff -r c898c2b1fd58 -r 3974935e0252 src/HOL/Topological_Spaces.thy --- a/src/HOL/Topological_Spaces.thy Fri Aug 24 20:22:10 2018 +0000 +++ b/src/HOL/Topological_Spaces.thy Fri Aug 24 20:22:14 2018 +0000 @@ -456,7 +456,7 @@ subsubsection \Topological filters\ definition (in topological_space) nhds :: "'a \ 'a filter" - where "nhds a = (INF S:{S. open S \ a \ S}. principal S)" + where "nhds a = (INF S\{S. open S \ a \ S}. principal S)" definition (in topological_space) at_within :: "'a \ 'a set \ 'a filter" ("at (_)/ within (_)" [1000, 60] 60) @@ -472,12 +472,12 @@ where "at_left x \ at x within {..< x}" lemma (in topological_space) nhds_generated_topology: - "open = generate_topology T \ nhds x = (INF S:{S\T. x \ S}. principal S)" + "open = generate_topology T \ nhds x = (INF S\{S\T. x \ S}. principal S)" unfolding nhds_def proof (safe intro!: antisym INF_greatest) fix S assume "generate_topology T S" "x \ S" - then show "(INF S:{S \ T. x \ S}. principal S) \ principal S" + then show "(INF S\{S \ T. x \ S}. principal S) \ principal S" by induct (auto intro: INF_lower order_trans simp: inf_principal[symmetric] simp del: inf_principal) qed (auto intro!: INF_lower intro: generate_topology.intros)