# HG changeset patch # User huffman # Date 1235196637 28800 # Node ID 3a074e3a9a18eb9378fa2c5036aff004a4290af2 # Parent e54d4d41fe8f0f7aec35fb00e55bdcbcb9fb8db0 generalize some lemmas diff -r e54d4d41fe8f -r 3a074e3a9a18 src/HOL/Library/Permutations.thy --- a/src/HOL/Library/Permutations.thy Fri Feb 20 16:07:20 2009 -0800 +++ b/src/HOL/Library/Permutations.thy Fri Feb 20 22:10:37 2009 -0800 @@ -757,13 +757,13 @@ done term setsum -lemma setsum_permutations_inverse: "setsum f {p. p permutes {m..n}} = setsum (\p. f(inv p)) {p. p permutes {m..n}}" (is "?lhs = ?rhs") +lemma setsum_permutations_inverse: "setsum f {p. p permutes S} = setsum (\p. f(inv p)) {p. p permutes S}" (is "?lhs = ?rhs") proof- - let ?S = "{p . p permutes {m .. n}}" + let ?S = "{p . p permutes S}" have th0: "inj_on inv ?S" proof(auto simp add: inj_on_def) fix q r - assume q: "q permutes {m .. n}" and r: "r permutes {m .. n}" and qr: "inv q = inv r" + assume q: "q permutes S" and r: "r permutes S" and qr: "inv q = inv r" hence "inv (inv q) = inv (inv r)" by simp with permutes_inv_inv[OF q] permutes_inv_inv[OF r] show "q = r" by metis @@ -774,17 +774,17 @@ qed lemma setum_permutations_compose_left: - assumes q: "q permutes {m..n}" - shows "setsum f {p. p permutes {m..n}} = - setsum (\p. f(q o p)) {p. p permutes {m..n}}" (is "?lhs = ?rhs") + assumes q: "q permutes S" + shows "setsum f {p. p permutes S} = + setsum (\p. f(q o p)) {p. p permutes S}" (is "?lhs = ?rhs") proof- - let ?S = "{p. p permutes {m..n}}" + let ?S = "{p. p permutes S}" have th0: "?rhs = setsum (f o (op o q)) ?S" by (simp add: o_def) have th1: "inj_on (op o q) ?S" apply (auto simp add: inj_on_def) proof- fix p r - assume "p permutes {m..n}" and r:"r permutes {m..n}" and rp: "q \ p = q \ r" + assume "p permutes S" and r:"r permutes S" and rp: "q \ p = q \ r" hence "inv q o q o p = inv q o q o r" by (simp add: o_assoc[symmetric]) with permutes_inj[OF q, unfolded inj_iff] @@ -796,17 +796,17 @@ qed lemma sum_permutations_compose_right: - assumes q: "q permutes {m..n}" - shows "setsum f {p. p permutes {m..n}} = - setsum (\p. f(p o q)) {p. p permutes {m..n}}" (is "?lhs = ?rhs") + assumes q: "q permutes S" + shows "setsum f {p. p permutes S} = + setsum (\p. f(p o q)) {p. p permutes S}" (is "?lhs = ?rhs") proof- - let ?S = "{p. p permutes {m..n}}" + let ?S = "{p. p permutes S}" have th0: "?rhs = setsum (f o (\p. p o q)) ?S" by (simp add: o_def) have th1: "inj_on (\p. p o q) ?S" apply (auto simp add: inj_on_def) proof- fix p r - assume "p permutes {m..n}" and r:"r permutes {m..n}" and rp: "p o q = r o q" + assume "p permutes S" and r:"r permutes S" and rp: "p o q = r o q" hence "p o (q o inv q) = r o (q o inv q)" by (simp add: o_assoc) with permutes_surj[OF q, unfolded surj_iff]