# HG changeset patch # User wenzelm # Date 1138559023 -3600 # Node ID 3a1e4ee72075c04c472a35aba884c9507bd3e797 # Parent 8e080d0252c5ab1718fcda43608a493b890cf592 tuned proofs; diff -r 8e080d0252c5 -r 3a1e4ee72075 src/Pure/Pure.thy --- a/src/Pure/Pure.thy Sun Jan 29 19:23:42 2006 +0100 +++ b/src/Pure/Pure.thy Sun Jan 29 19:23:43 2006 +0100 @@ -73,7 +73,8 @@ lemma imp_conjunction [unfolded prop_def]: includes meta_conjunction_syntax shows "(PROP A ==> PROP prop (PROP B && PROP C)) == (PROP A ==> PROP B) && (PROP A ==> PROP C)" -proof (unfold prop_def, rule) + unfolding prop_def +proof assume conj: "PROP A ==> PROP B && PROP C" fix X assume r: "(PROP A ==> PROP B) ==> (PROP A ==> PROP C) ==> PROP X" show "PROP X" @@ -121,6 +122,6 @@ lemma conjunction_assoc: includes meta_conjunction_syntax shows "((PROP A && PROP B) && PROP C) == (PROP A && (PROP B && PROP C))" - by (rule equal_intr_rule) (unfold imp_conjunction conjunction_imp) + unfolding conjunction_imp . end