# HG changeset patch # User wenzelm # Date 966501349 -7200 # Node ID 3ade112482afdcc8452465dcc907d6704ef003dd # Parent d9aa8ca06bc2818c68f32b85b5f65575c489c5d1 renamed 'RS' to 'THEN'; 'symmetric' attribute; diff -r d9aa8ca06bc2 -r 3ade112482af src/HOL/Real/HahnBanach/FunctionOrder.thy --- a/src/HOL/Real/HahnBanach/FunctionOrder.thy Thu Aug 17 10:34:52 2000 +0200 +++ b/src/HOL/Real/HahnBanach/FunctionOrder.thy Thu Aug 17 10:35:49 2000 +0200 @@ -79,7 +79,7 @@ show "\y. (a, y) \ g" .. assume uniq: "!!x y z. (x, y) \ g ==> (x, z) \ g ==> z = y" show "b = (SOME y. (a, y) \ g)" - proof (rule select_equality [RS sym]) + proof (rule select_equality [symmetric]) fix y assume "(a, y) \ g" show "y = b" by (rule uniq) qed qed diff -r d9aa8ca06bc2 -r 3ade112482af src/HOL/Real/HahnBanach/HahnBanach.thy --- a/src/HOL/Real/HahnBanach/HahnBanach.thy Thu Aug 17 10:34:52 2000 +0200 +++ b/src/HOL/Real/HahnBanach/HahnBanach.thy Thu Aug 17 10:35:49 2000 +0200 @@ -271,7 +271,7 @@ by (simp add: Let_def) also have "(x, #0) = (SOME (y, a). x = y + a \ x' \ y \ H)" - by (rule decomp_H'_H [RS sym]) (simp! add: x')+ + by (rule decomp_H'_H [symmetric]) (simp! add: x')+ also have "(let (y,a) = (SOME (y,a). x = y + a \ x' \ y \ H) in h y + a * xi) = h' x" by (simp!) @@ -328,7 +328,7 @@ proof - assume "is_vectorspace E" "is_subspace F E" "is_seminorm E p" "is_linearform F f" "\x \ F. |f x| <= p x" -have "\x \ F. f x <= p x" by (rule abs_ineq_iff [RS iffD1]) +have "\x \ F. f x <= p x" by (rule abs_ineq_iff [THEN iffD1]) hence "\g. is_linearform E g \ (\x \ F. g x = f x) \ (\x \ E. g x <= p x)" by (simp! only: HahnBanach) diff -r d9aa8ca06bc2 -r 3ade112482af src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy --- a/src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy Thu Aug 17 10:34:52 2000 +0200 +++ b/src/HOL/Real/HahnBanach/HahnBanachExtLemmas.thy Thu Aug 17 10:35:49 2000 +0200 @@ -185,9 +185,9 @@ also; have "... = (h y1 + a1 * xi) + (h y2 + a2 * xi)"; by simp; also; have "h y1 + a1 * xi = h' x1"; - by (rule h'_definite [RS sym]); + by (rule h'_definite [symmetric]); also; have "h y2 + a2 * xi = h' x2"; - by (rule h'_definite [RS sym]); + by (rule h'_definite [symmetric]); finally; show ?thesis; .; qed; @@ -229,7 +229,7 @@ also; from vs y1'; have "... = c * (h y1 + a1 * xi)"; by (simp add: real_add_mult_distrib2 real_mult_assoc); also; have "h y1 + a1 * xi = h' x1"; - by (rule h'_definite [RS sym]); + by (rule h'_definite [symmetric]); finally; show ?thesis; .; qed; qed; @@ -300,7 +300,7 @@ also; from nz vs y; have "... = p (y + a \ x0)"; by (simp add: vs_add_mult_distrib1); also; from nz vs y; have "a * (h (rinv a \ y)) = h y"; - by (simp add: linearform_mult [RS sym]); + by (simp add: linearform_mult [symmetric]); finally; have "a * xi <= p (y + a \ x0) - h y"; .; hence "h y + a * xi <= h y + p (y + a \ x0) - h y"; @@ -329,7 +329,7 @@ also; from nz vs y; have "... = p (y + a \ x0)"; by (simp add: vs_add_mult_distrib1); also; from nz vs y; have "a * h (rinv a \ y) = h y"; - by (simp add: linearform_mult [RS sym]); + by (simp add: linearform_mult [symmetric]); finally; have "a * xi <= p (y + a \ x0) - h y"; .; hence "h y + a * xi <= h y + (p (y + a \ x0) - h y)"; diff -r d9aa8ca06bc2 -r 3ade112482af src/HOL/Real/HahnBanach/HahnBanachSupLemmas.thy --- a/src/HOL/Real/HahnBanach/HahnBanachSupLemmas.thy Thu Aug 17 10:34:52 2000 +0200 +++ b/src/HOL/Real/HahnBanach/HahnBanachSupLemmas.thy Thu Aug 17 10:35:49 2000 +0200 @@ -333,7 +333,7 @@ also assume "graph G g = x" also have "... \ c" . hence "x \ \c" by fast - also have [RS sym]: "graph H h = \c" . + also have [symmetric]: "graph H h = \c" . finally show ?thesis . qed qed @@ -476,7 +476,7 @@ fix H' h' assume "x \ H'" "graph H' h' \ graph H h" and a: "\x \ H'. h' x <= p x" - have [RS sym]: "h' x = h x" .. + have [symmetric]: "h' x = h x" .. also from a have "h' x <= p x " .. finally show ?thesis . qed @@ -522,7 +522,7 @@ show "- p x <= h x" proof (rule real_minus_le) from h have "- h x = h (- x)" - by (rule linearform_neg [RS sym]) + by (rule linearform_neg [symmetric]) also from r have "... <= p (- x)" by (simp!) also have "... = p x" proof (rule seminorm_minus) diff -r d9aa8ca06bc2 -r 3ade112482af src/HOL/Real/HahnBanach/Subspace.thy --- a/src/HOL/Real/HahnBanach/Subspace.thy Thu Aug 17 10:34:52 2000 +0200 +++ b/src/HOL/Real/HahnBanach/Subspace.thy Thu Aug 17 10:35:49 2000 +0200 @@ -227,7 +227,7 @@ "x \ U + V = (\u \ U. \v \ V. x = u + v)" by (unfold vs_sum_def) fast -lemmas vs_sumE = vs_sumD [RS iffD1, elimify] +lemmas vs_sumE = vs_sumD [THEN iffD1, elimify, standard] lemma vs_sumI [intro?]: "[| x \ U; y \ V; t= x + y |] ==> t \ U + V" @@ -343,7 +343,7 @@ qed show "v1 = v2" - proof (rule vs_add_minus_eq [RS sym]) + proof (rule vs_add_minus_eq [symmetric]) show "v2 - v1 = 0" by (rule Int_singletonD [OF _ v' v]) show "v1 \ E" .. show "v2 \ E" .. @@ -372,7 +372,7 @@ show "H \ (lin x') = {0}" proof show "H \ lin x' <= {0}" - proof (intro subsetI, elim IntE, rule singleton_iff[RS iffD2]) + proof (intro subsetI, elim IntE, rule singleton_iff [THEN iffD2]) fix x assume "x \ H" "x \ lin x'" thus "x = 0" proof (unfold lin_def, elim CollectE exE conjE) @@ -406,7 +406,7 @@ from c show "y1 = y2" by simp show "a1 = a2" - proof (rule vs_mult_right_cancel [RS iffD1]) + proof (rule vs_mult_right_cancel [THEN iffD1]) from c show "a1 \ x' = a2 \ x'" by simp qed qed diff -r d9aa8ca06bc2 -r 3ade112482af src/HOL/Real/HahnBanach/VectorSpace.thy --- a/src/HOL/Real/HahnBanach/VectorSpace.thy Thu Aug 17 10:34:52 2000 +0200 +++ b/src/HOL/Real/HahnBanach/VectorSpace.thy Thu Aug 17 10:35:49 2000 +0200 @@ -292,11 +292,11 @@ lemma vs_add_minus_cancel [simp]: "[| is_vectorspace V; x \ V; y \ V |] ==> x + (- x + y) = y" - by (simp add: vs_add_assoc [RS sym] del: vs_add_commute) + by (simp add: vs_add_assoc [symmetric] del: vs_add_commute) lemma vs_minus_add_cancel [simp]: "[| is_vectorspace V; x \ V; y \ V |] ==> - x + (x + y) = y" - by (simp add: vs_add_assoc [RS sym] del: vs_add_commute) + by (simp add: vs_add_assoc [symmetric] del: vs_add_commute) lemma vs_minus_add_distrib [simp]: "[| is_vectorspace V; x \ V; y \ V |] @@ -323,7 +323,7 @@ by (simp! only: vs_add_assoc vs_neg_closed) also assume "x + y = x + z" also have "- x + (x + z) = - x + x + z" - by (simp! only: vs_add_assoc [RS sym] vs_neg_closed) + by (simp! only: vs_add_assoc [symmetric] vs_neg_closed) also have "... = z" by (simp!) finally show ?R . qed force @@ -336,7 +336,7 @@ lemma vs_add_assoc_cong: "[| is_vectorspace V; x \ V; y \ V; x' \ V; y' \ V; z \ V |] ==> x + y = x' + y' ==> x + (y + z) = x' + (y' + z)" - by (simp only: vs_add_assoc [RS sym]) + by (simp only: vs_add_assoc [symmetric]) lemma vs_mult_left_commute: "[| is_vectorspace V; x \ V; y \ V; z \ V |] @@ -504,7 +504,7 @@ proof assume l: ?L have "x + z = 0" - proof (rule vs_add_left_cancel [RS iffD1]) + proof (rule vs_add_left_cancel [THEN iffD1]) have "y + (x + z) = x + (y + z)" by (simp!) also note l also have "y = y + 0" by (simp!)