# HG changeset patch # User chaieb # Date 1240597754 -3600 # Node ID 3b143758dfe95acb983012aef1dbe59dbb6a7224 # Parent 0b960d9c5317eced94bac85e1922f5875075614b more general statements diff -r 0b960d9c5317 -r 3b143758dfe9 src/HOL/Library/Formal_Power_Series.thy --- a/src/HOL/Library/Formal_Power_Series.thy Sun Apr 19 17:27:43 2009 +0200 +++ b/src/HOL/Library/Formal_Power_Series.thy Fri Apr 24 19:29:14 2009 +0100 @@ -979,7 +979,7 @@ (* {a_{n+k}}_0^infty Corresponds to (f - setsum (\i. a_i * x^i))/x^h, for h>0*) lemma fps_power_mult_eq_shift: - "X^Suc k * Abs_fps (\n. a (n + Suc k)) = Abs_fps a - setsum (\i. fps_const (a i :: 'a:: field) * X^i) {0 .. k}" (is "?lhs = ?rhs") + "X^Suc k * Abs_fps (\n. a (n + Suc k)) = Abs_fps a - setsum (\i. fps_const (a i :: 'a:: comm_ring_1) * X^i) {0 .. k}" (is "?lhs = ?rhs") proof- {fix n:: nat have "?lhs $ n = (if n < Suc k then 0 else a n)" @@ -990,7 +990,7 @@ next case (Suc k) note th = Suc.hyps[symmetric] - have "(Abs_fps a - setsum (\i. fps_const (a i :: 'a:: field) * X^i) {0 .. Suc k})$n = (Abs_fps a - setsum (\i. fps_const (a i :: 'a:: field) * X^i) {0 .. k} - fps_const (a (Suc k)) * X^ Suc k) $ n" by (simp add: ring_simps) + have "(Abs_fps a - setsum (\i. fps_const (a i :: 'a) * X^i) {0 .. Suc k})$n = (Abs_fps a - setsum (\i. fps_const (a i :: 'a) * X^i) {0 .. k} - fps_const (a (Suc k)) * X^ Suc k) $ n" by (simp add: ring_simps) also have "\ = (if n < Suc k then 0 else a n) - (fps_const (a (Suc k)) * X^ Suc k)$n" using th unfolding fps_sub_nth by simp @@ -1027,7 +1027,7 @@ lemma fps_mult_X_deriv_shift: "X* fps_deriv a = Abs_fps (\n. of_nat n* a$n)" by (simp add: fps_eq_iff) -lemma fps_mult_XD_shift: "(XD ^k) (a:: ('a::{comm_ring_1, recpower, ring_char_0}) fps) = Abs_fps (\n. (of_nat n ^ k) * a$n)" +lemma fps_mult_XD_shift: "(XD ^k) (a:: ('a::{comm_ring_1, recpower}) fps) = Abs_fps (\n. (of_nat n ^ k) * a$n)" by (induct k arbitrary: a) (simp_all add: power_Suc XD_def fps_eq_iff ring_simps del: One_nat_def) subsubsection{* Rule 3 is trivial and is given by @{text fps_times_def}*}