# HG changeset patch # User wenzelm # Date 1358369439 -3600 # Node ID 3b6417e9f73e225a49e86e6c41b1903a7faf8275 # Parent 9459f59cff0941bda98790ff3ca9afae392dc07b tuned proofs; diff -r 9459f59cff09 -r 3b6417e9f73e src/HOL/Hahn_Banach/Function_Norm.thy --- a/src/HOL/Hahn_Banach/Function_Norm.thy Wed Jan 16 21:49:56 2013 +0100 +++ b/src/HOL/Hahn_Banach/Function_Norm.thy Wed Jan 16 21:50:39 2013 +0100 @@ -244,7 +244,7 @@ lemma (in normed_vectorspace_with_fn_norm) fn_norm_least [intro?]: assumes "continuous V f norm" - assumes ineq: "\x \ V. \f x\ \ c * \x\" and ge: "0 \ c" + assumes ineq: "\x. x \ V \ \f x\ \ c * \x\" and ge: "0 \ c" shows "\f\\V \ c" proof - interpret continuous V f norm by fact @@ -265,7 +265,7 @@ proof (rule mult_right_mono) have "0 < \x\" using x x_neq .. then show "0 \ inverse \x\" by simp - from ineq and x show "\f x\ \ c * \x\" .. + from x show "\f x\ \ c * \x\" by (rule ineq) qed also have "\ = c" proof - diff -r 9459f59cff09 -r 3b6417e9f73e src/HOL/Hahn_Banach/Hahn_Banach.thy --- a/src/HOL/Hahn_Banach/Hahn_Banach.thy Wed Jan 16 21:49:56 2013 +0100 +++ b/src/HOL/Hahn_Banach/Hahn_Banach.thy Wed Jan 16 21:50:39 2013 +0100 @@ -469,15 +469,13 @@ \end{center} *} - have "\x \ E. \g x\ \ \f\\F * \x\" + from g_cont _ ge_zero + show "\g\\E \ \f\\F" proof fix x assume "x \ E" with b show "\g x\ \ \f\\F * \x\" by (simp only: p_def) qed - from g_cont this ge_zero - show "\g\\E \ \f\\F" - by (rule fn_norm_least [of g, folded B_def fn_norm_def]) txt {* The other direction is achieved by a similar argument. *} @@ -485,9 +483,9 @@ proof (rule normed_vectorspace_with_fn_norm.fn_norm_least [OF normed_vectorspace_with_fn_norm.intro, OF F_norm, folded B_def fn_norm_def]) - show "\x \ F. \f x\ \ \g\\E * \x\" - proof - fix x assume x: "x \ F" + fix x assume x: "x \ F" + show "\f x\ \ \g\\E * \x\" + proof - from a x have "g x = f x" .. then have "\f x\ = \g x\" by (simp only:) also from g_cont @@ -495,8 +493,9 @@ proof (rule fn_norm_le_cong [OF _ linearformE, folded B_def fn_norm_def]) from FE x show "x \ E" .. qed - finally show "\f x\ \ \g\\E * \x\" . + finally show ?thesis . qed + next show "0 \ \g\\E" using g_cont by (rule fn_norm_ge_zero [of g, folded B_def fn_norm_def])