# HG changeset patch # User krauss # Date 1267548310 -3600 # Node ID 3d105282262ef9023bf588d434d786347d345e2e # Parent 5d88ffdb290c0d5ae3b9498950ba51c99c7683ce removed obsolete helper theory diff -r 5d88ffdb290c -r 3d105282262e src/HOL/IsaMakefile --- a/src/HOL/IsaMakefile Tue Mar 02 15:39:15 2010 +0100 +++ b/src/HOL/IsaMakefile Tue Mar 02 17:45:10 2010 +0100 @@ -756,7 +756,7 @@ HOL-ZF: HOL $(LOG)/HOL-ZF.gz -$(LOG)/HOL-ZF.gz: $(OUT)/HOL ZF/ROOT.ML ZF/Helper.thy ZF/LProd.thy \ +$(LOG)/HOL-ZF.gz: $(OUT)/HOL ZF/ROOT.ML ZF/LProd.thy \ ZF/HOLZF.thy ZF/MainZF.thy ZF/Games.thy ZF/document/root.tex @$(ISABELLE_TOOL) usedir $(OUT)/HOL ZF diff -r 5d88ffdb290c -r 3d105282262e src/HOL/ZF/HOLZF.thy --- a/src/HOL/ZF/HOLZF.thy Tue Mar 02 15:39:15 2010 +0100 +++ b/src/HOL/ZF/HOLZF.thy Tue Mar 02 17:45:10 2010 +0100 @@ -6,7 +6,7 @@ *) theory HOLZF -imports Helper +imports Main begin typedecl ZF @@ -298,7 +298,7 @@ apply (rule_tac x="Fst z" in exI) apply (simp add: isOpair_def) apply (auto simp add: Fst Snd Opair) - apply (rule theI2') + apply (rule the1I2) apply auto apply (drule Fun_implies_PFun) apply (drule_tac x="Opair x ya" and y="Opair x yb" in PFun_inj) @@ -306,7 +306,7 @@ apply (drule Fun_implies_PFun) apply (drule_tac x="Opair x y" and y="Opair x ya" in PFun_inj) apply (auto simp add: Fst Snd) - apply (rule theI2') + apply (rule the1I2) apply (auto simp add: Fun_total) apply (drule Fun_implies_PFun) apply (drule_tac x="Opair a x" and y="Opair a y" in PFun_inj) diff -r 5d88ffdb290c -r 3d105282262e src/HOL/ZF/Helper.thy --- a/src/HOL/ZF/Helper.thy Tue Mar 02 15:39:15 2010 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,32 +0,0 @@ -(* Title: HOL/ZF/Helper.thy - ID: $Id$ - Author: Steven Obua - - Some helpful lemmas that probably will end up elsewhere. -*) - -theory Helper -imports Main -begin - -lemma theI2' : "?! x. P x \ (!! x. P x \ Q x) \ Q (THE x. P x)" - apply auto - apply (subgoal_tac "P (THE x. P x)") - apply blast - apply (rule theI) - apply auto - done - -lemma in_range_superfluous: "(z \ range f & z \ (f ` x)) = (z \ f ` x)" - by auto - -lemma f_x_in_range_f: "f x \ range f" - by (blast intro: image_eqI) - -lemma comp_inj: "inj f \ inj g \ inj (g o f)" - by (blast intro: comp_inj_on subset_inj_on) - -lemma comp_image_eq: "(g o f) ` x = g ` f ` x" - by auto - -end \ No newline at end of file diff -r 5d88ffdb290c -r 3d105282262e src/HOL/ZF/Zet.thy --- a/src/HOL/ZF/Zet.thy Tue Mar 02 15:39:15 2010 +0100 +++ b/src/HOL/ZF/Zet.thy Tue Mar 02 17:45:10 2010 +0100 @@ -35,7 +35,7 @@ apply (rule_tac x="Repl z (g o (inv_into A f))" in exI) apply (simp add: explode_Repl_eq) apply (subgoal_tac "explode z = f ` A") - apply (simp_all add: comp_image_eq) + apply (simp_all add: image_compose) done lemma zet_image_mem: @@ -56,7 +56,7 @@ apply (auto simp add: subset injf) done show ?thesis - apply (simp add: zet_def' comp_image_eq[symmetric]) + apply (simp add: zet_def' image_compose[symmetric]) apply (rule exI[where x="?w"]) apply (simp add: injw image_zet_rep Azet) done @@ -108,7 +108,7 @@ lemma comp_zimage_eq: "zimage g (zimage f A) = zimage (g o f) A" apply (simp add: zimage_def) apply (subst Abs_zet_inverse) - apply (simp_all add: comp_image_eq zet_image_mem Rep_zet) + apply (simp_all add: image_compose zet_image_mem Rep_zet) done definition zunion :: "'a zet \ 'a zet \ 'a zet" where