# HG changeset patch # User nipkow # Date 1078597887 -3600 # Node ID 3d6ed7eedfc8546101b8d12205b00437a385fa7b # Parent 0f626a71245636e416f97cb7273f37f7c9f04209 Conversion ML -> Isar diff -r 0f626a712456 -r 3d6ed7eedfc8 src/HOL/Lex/RegExp2NA.ML --- a/src/HOL/Lex/RegExp2NA.ML Fri Mar 05 15:30:49 2004 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,429 +0,0 @@ -(* Title: HOL/Lex/RegExp2NA.ML - ID: $Id$ - Author: Tobias Nipkow - Copyright 1998 TUM -*) - -(******************************************************) -(* atom *) -(******************************************************) - -Goalw [atom_def] "(fin (atom a) q) = (q = [False])"; -by (Simp_tac 1); -qed "fin_atom"; - -Goalw [atom_def] "start (atom a) = [True]"; -by (Simp_tac 1); -qed "start_atom"; - -Goalw [atom_def,thm"step_def"] - "(p,q) : step (atom a) b = (p=[True] & q=[False] & b=a)"; -by (Simp_tac 1); -qed "in_step_atom_Some"; -Addsimps [in_step_atom_Some]; - -Goal - "([False],[False]) : steps (atom a) w = (w = [])"; -by (induct_tac "w" 1); - by (Simp_tac 1); -by (asm_simp_tac (simpset() addsimps [rel_comp_def]) 1); -qed "False_False_in_steps_atom"; - -Goal - "(start (atom a), [False]) : steps (atom a) w = (w = [a])"; -by (induct_tac "w" 1); - by (asm_simp_tac (simpset() addsimps [start_atom]) 1); -by (asm_full_simp_tac (simpset() - addsimps [False_False_in_steps_atom,rel_comp_def,start_atom]) 1); -qed "start_fin_in_steps_atom"; - -Goal - "accepts (atom a) w = (w = [a])"; -by (simp_tac(simpset() addsimps - [thm"accepts_conv_steps",start_fin_in_steps_atom,fin_atom]) 1); -qed "accepts_atom"; - - -(******************************************************) -(* or *) -(******************************************************) - -(***** True/False ueber fin anheben *****) - -Goalw [or_def] - "!L R. fin (or L R) (True#p) = fin L p"; -by (Simp_tac 1); -qed_spec_mp "fin_or_True"; - -Goalw [or_def] - "!L R. fin (or L R) (False#p) = fin R p"; -by (Simp_tac 1); -qed_spec_mp "fin_or_False"; - -AddIffs [fin_or_True,fin_or_False]; - -(***** True/False ueber step anheben *****) - -Goalw [or_def,thm"step_def"] -"!L R. (True#p,q) : step (or L R) a = (? r. q = True#r & (p,r) : step L a)"; -by (Simp_tac 1); -by (Blast_tac 1); -qed_spec_mp "True_in_step_or"; - -Goalw [or_def,thm"step_def"] -"!L R. (False#p,q) : step (or L R) a = (? r. q = False#r & (p,r) : step R a)"; -by (Simp_tac 1); -by (Blast_tac 1); -qed_spec_mp "False_in_step_or"; - -AddIffs [True_in_step_or,False_in_step_or]; - - -(***** True/False ueber steps anheben *****) - -Goal - "!p. (True#p,q):steps (or L R) w = (? r. q = True # r & (p,r):steps L w)"; -by (induct_tac "w" 1); -by (ALLGOALS Force_tac); -qed_spec_mp "lift_True_over_steps_or"; - -Goal - "!p. (False#p,q):steps (or L R) w = (? r. q = False#r & (p,r):steps R w)"; -by (induct_tac "w" 1); -by (ALLGOALS Force_tac); -qed_spec_mp "lift_False_over_steps_or"; - -AddIffs [lift_True_over_steps_or,lift_False_over_steps_or]; - - -(** From the start **) - -Goalw [or_def,thm"step_def"] - "!L R. (start(or L R),q) : step(or L R) a = \ -\ (? p. (q = True#p & (start L,p) : step L a) | \ -\ (q = False#p & (start R,p) : step R a))"; -by (Simp_tac 1); -by (Blast_tac 1); -qed_spec_mp "start_step_or"; -AddIffs [start_step_or]; - -Goal - "(start(or L R), q) : steps (or L R) w = \ -\ ( (w = [] & q = start(or L R)) | \ -\ (w ~= [] & (? p. q = True # p & (start L,p) : steps L w | \ -\ q = False # p & (start R,p) : steps R w)))"; -by (case_tac "w" 1); - by (Asm_simp_tac 1); - by (Blast_tac 1); -by (Asm_simp_tac 1); -by (Blast_tac 1); -qed "steps_or"; - -Goalw [or_def] - "!L R. fin (or L R) (start(or L R)) = \ -\ (fin L (start L) | fin R (start R))"; -by (Simp_tac 1); -qed_spec_mp "fin_start_or"; -AddIffs [fin_start_or]; - -Goal - "accepts (or L R) w = (accepts L w | accepts R w)"; -by (simp_tac (simpset() addsimps [thm"accepts_conv_steps",steps_or]) 1); -(* get rid of case_tac: *) -by (case_tac "w = []" 1); -by (Auto_tac); -qed "accepts_or"; -AddIffs [accepts_or]; - -(******************************************************) -(* conc *) -(******************************************************) - -(** True/False in fin **) - -Goalw [conc_def] - "!L R. fin (conc L R) (True#p) = (fin L p & fin R (start R))"; -by (Simp_tac 1); -qed_spec_mp "fin_conc_True"; - -Goalw [conc_def] - "!L R. fin (conc L R) (False#p) = fin R p"; -by (Simp_tac 1); -qed "fin_conc_False"; - -AddIffs [fin_conc_True,fin_conc_False]; - -(** True/False in step **) - -Goalw [conc_def,thm"step_def"] - "!L R. (True#p,q) : step (conc L R) a = \ -\ ((? r. q=True#r & (p,r): step L a) | \ -\ (fin L p & (? r. q=False#r & (start R,r) : step R a)))"; -by (Simp_tac 1); -by (Blast_tac 1); -qed_spec_mp "True_step_conc"; - -Goalw [conc_def,thm"step_def"] - "!L R. (False#p,q) : step (conc L R) a = \ -\ (? r. q = False#r & (p,r) : step R a)"; -by (Simp_tac 1); -by (Blast_tac 1); -qed_spec_mp "False_step_conc"; - -AddIffs [True_step_conc, False_step_conc]; - -(** False in steps **) - -Goal - "!p. (False#p,q): steps (conc L R) w = (? r. q=False#r & (p,r): steps R w)"; -by (induct_tac "w" 1); -by (ALLGOALS Force_tac); -qed_spec_mp "False_steps_conc"; -AddIffs [False_steps_conc]; - -(** True in steps **) - -Goal - "!!L R. !p. (p,q) : steps L w --> (True#p,True#q) : steps (conc L R) w"; -by (induct_tac "w" 1); - by (Simp_tac 1); -by (Simp_tac 1); -by (Blast_tac 1); -qed_spec_mp "True_True_steps_concI"; - -Goal - "!L R. (True#p,False#q) : step (conc L R) a = \ -\ (fin L p & (start R,q) : step R a)"; -by (Simp_tac 1); -qed "True_False_step_conc"; -AddIffs [True_False_step_conc]; - -Goal - "!p. (True#p,q) : steps (conc L R) w --> \ -\ ((? r. (p,r) : steps L w & q = True#r) | \ -\ (? u a v. w = u@a#v & \ -\ (? r. (p,r) : steps L u & fin L r & \ -\ (? s. (start R,s) : step R a & \ -\ (? t. (s,t) : steps R v & q = False#t)))))"; -by (induct_tac "w" 1); - by (Simp_tac 1); -by (Simp_tac 1); -by (clarify_tac (claset() delrules [disjCI]) 1); -by (etac disjE 1); - by (clarify_tac (claset() delrules [disjCI]) 1); - by (etac allE 1 THEN mp_tac 1); - by (etac disjE 1); - by (Blast_tac 1); - by (rtac disjI2 1); - by (Clarify_tac 1); - by (Simp_tac 1); - by (res_inst_tac[("x","a#u")] exI 1); - by (Simp_tac 1); - by (Blast_tac 1); -by (rtac disjI2 1); -by (Clarify_tac 1); -by (Simp_tac 1); -by (res_inst_tac[("x","[]")] exI 1); -by (Simp_tac 1); -by (Blast_tac 1); -qed_spec_mp "True_steps_concD"; - -Goal - "(True#p,q) : steps (conc L R) w = \ -\ ((? r. (p,r) : steps L w & q = True#r) | \ -\ (? u a v. w = u@a#v & \ -\ (? r. (p,r) : steps L u & fin L r & \ -\ (? s. (start R,s) : step R a & \ -\ (? t. (s,t) : steps R v & q = False#t)))))"; -by (force_tac (claset() addDs [True_steps_concD] - addIs [True_True_steps_concI],simpset()) 1); -qed "True_steps_conc"; - -(** starting from the start **) - -Goalw [conc_def] - "!L R. start(conc L R) = True#start L"; -by (Simp_tac 1); -qed_spec_mp "start_conc"; - -Goalw [conc_def] - "!L R. fin(conc L R) p = ((fin R (start R) & (? s. p = True#s & fin L s)) | \ -\ (? s. p = False#s & fin R s))"; -by (simp_tac (simpset() addsplits [thm"list.split"]) 1); -by (Blast_tac 1); -qed_spec_mp "final_conc"; - -Goal - "accepts (conc L R) w = (? u v. w = u@v & accepts L u & accepts R v)"; -by (simp_tac (simpset() addsimps - [thm"accepts_conv_steps",True_steps_conc,final_conc,start_conc]) 1); -by (rtac iffI 1); - by (Clarify_tac 1); - by (etac disjE 1); - by (Clarify_tac 1); - by (etac disjE 1); - by (res_inst_tac [("x","w")] exI 1); - by (Simp_tac 1); - by (Blast_tac 1); - by (Blast_tac 1); - by (etac disjE 1); - by (Blast_tac 1); - by (Clarify_tac 1); - by (res_inst_tac [("x","u")] exI 1); - by (Simp_tac 1); - by (Blast_tac 1); -by (Clarify_tac 1); -by (case_tac "v" 1); - by (Asm_full_simp_tac 1); - by (Blast_tac 1); -by (Asm_full_simp_tac 1); -by (Blast_tac 1); -qed "accepts_conc"; - -(******************************************************) -(* epsilon *) -(******************************************************) - -Goalw [epsilon_def,thm"step_def"] "step epsilon a = {}"; -by (Simp_tac 1); -qed "step_epsilon"; -Addsimps [step_epsilon]; - -Goal "((p,q) : steps epsilon w) = (w=[] & p=q)"; -by (induct_tac "w" 1); -by (Auto_tac); -qed "steps_epsilon"; - -Goal "accepts epsilon w = (w = [])"; -by (simp_tac (simpset() addsimps [steps_epsilon,thm"accepts_conv_steps"]) 1); -by (simp_tac (simpset() addsimps [epsilon_def]) 1); -qed "accepts_epsilon"; -AddIffs [accepts_epsilon]; - -(******************************************************) -(* plus *) -(******************************************************) - -Goalw [plus_def] "!A. start (plus A) = start A"; -by (Simp_tac 1); -qed_spec_mp "start_plus"; -Addsimps [start_plus]; - -Goalw [plus_def] "!A. fin (plus A) = fin A"; -by (Simp_tac 1); -qed_spec_mp "fin_plus"; -AddIffs [fin_plus]; - -Goalw [plus_def,thm"step_def"] - "!A. (p,q) : step A a --> (p,q) : step (plus A) a"; -by (Simp_tac 1); -qed_spec_mp "step_plusI"; - -Goal "!p. (p,q) : steps A w --> (p,q) : steps (plus A) w"; -by (induct_tac "w" 1); - by (Simp_tac 1); -by (Simp_tac 1); -by (blast_tac (claset() addIs [step_plusI]) 1); -qed_spec_mp "steps_plusI"; - -Goalw [plus_def,thm"step_def"] - "!A. (p,r): step (plus A) a = \ -\ ( (p,r): step A a | fin A p & (start A,r) : step A a )"; -by (Simp_tac 1); -qed_spec_mp "step_plus_conv"; -AddIffs [step_plus_conv]; - -Goal - "[| (start A,q) : steps A u; u ~= []; fin A p |] \ -\ ==> (p,q) : steps (plus A) u"; -by (case_tac "u" 1); - by (Blast_tac 1); -by (Asm_full_simp_tac 1); -by (blast_tac (claset() addIs [steps_plusI]) 1); -qed "fin_steps_plusI"; - -(* reverse list induction! Complicates matters for conc? *) -Goal - "!r. (start A,r) : steps (plus A) w --> \ -\ (? us v. w = concat us @ v & \ -\ (!u:set us. accepts A u) & \ -\ (start A,r) : steps A v)"; -by (res_inst_tac [("xs","w")] rev_induct 1); - by (Simp_tac 1); - by (res_inst_tac [("x","[]")] exI 1); - by (Simp_tac 1); -by (Simp_tac 1); -by (Clarify_tac 1); -by (etac allE 1 THEN mp_tac 1); -by (Clarify_tac 1); -by (etac disjE 1); - by (res_inst_tac [("x","us")] exI 1); - by (Asm_simp_tac 1); - by (Blast_tac 1); -by (res_inst_tac [("x","us@[v]")] exI 1); -by (asm_full_simp_tac (simpset() addsimps [thm"accepts_conv_steps"]) 1); -by (Blast_tac 1); -qed_spec_mp "start_steps_plusD"; - -Goal - "us ~= [] --> (!u : set us. accepts A u) --> accepts (plus A) (concat us)"; -by (simp_tac (simpset() addsimps [thm"accepts_conv_steps"]) 1); -by (res_inst_tac [("xs","us")] rev_induct 1); - by (Simp_tac 1); -by (rename_tac "u us" 1); -by (Simp_tac 1); -by (Clarify_tac 1); -by (case_tac "us = []" 1); - by (Asm_full_simp_tac 1); - by (blast_tac (claset() addIs [steps_plusI,fin_steps_plusI]) 1); -by (Clarify_tac 1); -by (case_tac "u = []" 1); - by (Asm_full_simp_tac 1); - by (blast_tac (claset() addIs [steps_plusI,fin_steps_plusI]) 1); -by (Asm_full_simp_tac 1); -by (blast_tac (claset() addIs [steps_plusI,fin_steps_plusI]) 1); -qed_spec_mp "steps_star_cycle"; - -Goal - "accepts (plus A) w = \ -\ (? us. us ~= [] & w = concat us & (!u : set us. accepts A u))"; -by (rtac iffI 1); - by (asm_full_simp_tac (simpset() addsimps [thm"accepts_conv_steps"]) 1); - by (Clarify_tac 1); - by (dtac start_steps_plusD 1); - by (Clarify_tac 1); - by (res_inst_tac [("x","us@[v]")] exI 1); - by (asm_full_simp_tac (simpset() addsimps [thm"accepts_conv_steps"]) 1); - by (Blast_tac 1); -by (blast_tac (claset() addIs [steps_star_cycle]) 1); -qed "accepts_plus"; -AddIffs [accepts_plus]; - -(******************************************************) -(* star *) -(******************************************************) - -Goalw [star_def] -"accepts (star A) w = \ -\ (? us. (!u : set us. accepts A u) & w = concat us)"; -by (rtac iffI 1); - by (Clarify_tac 1); - by (etac disjE 1); - by (res_inst_tac [("x","[]")] exI 1); - by (Simp_tac 1); - by (Blast_tac 1); - by (Blast_tac 1); -by (Force_tac 1); -qed "accepts_star"; - -(***** Correctness of r2n *****) - -Goal - "!w. accepts (rexp2na r) w = (w : lang r)"; -by (induct_tac "r" 1); - by (simp_tac (simpset() addsimps [thm"accepts_conv_steps"]) 1); - by (simp_tac(simpset() addsimps [accepts_atom]) 1); - by (Asm_simp_tac 1); - by (asm_simp_tac (simpset() addsimps [accepts_conc,thm"RegSet.conc_def"]) 1); -by (asm_simp_tac (simpset() addsimps [accepts_star,thm"in_star"]) 1); -qed_spec_mp "accepts_rexp2na"; diff -r 0f626a712456 -r 3d6ed7eedfc8 src/HOL/Lex/RegExp2NA.thy --- a/src/HOL/Lex/RegExp2NA.thy Fri Mar 05 15:30:49 2004 +0100 +++ b/src/HOL/Lex/RegExp2NA.thy Sat Mar 06 19:31:27 2004 +0100 @@ -7,20 +7,20 @@ into nondeterministic automata *without* epsilon transitions *) -RegExp2NA = RegExp + NA + +theory RegExp2NA = RegExp + NA: -types 'a bitsNA = ('a,bool list)na +types 'a bitsNA = "('a,bool list)na" -syntax "##" :: 'a => 'a list set => 'a list set (infixr 65) +syntax "##" :: "'a => 'a list set => 'a list set" (infixr 65) translations "x ## S" == "Cons x ` S" constdefs - atom :: 'a => 'a bitsNA + atom :: "'a => 'a bitsNA" "atom a == ([True], %b s. if s=[True] & b=a then {[False]} else {}, %s. s=[False])" - or :: 'a bitsNA => 'a bitsNA => 'a bitsNA + or :: "'a bitsNA => 'a bitsNA => 'a bitsNA" "or == %(ql,dl,fl)(qr,dr,fr). ([], %a s. case s of @@ -30,7 +30,7 @@ %s. case s of [] => (fl ql | fr qr) | left#s => if left then fl s else fr s)" - conc :: 'a bitsNA => 'a bitsNA => 'a bitsNA + conc :: "'a bitsNA => 'a bitsNA => 'a bitsNA" "conc == %(ql,dl,fl)(qr,dr,fr). (True#ql, %a s. case s of @@ -40,16 +40,16 @@ else False ## dr a s, %s. case s of [] => False | left#s => left & fl s & fr qr | ~left & fr s)" - epsilon :: 'a bitsNA + epsilon :: "'a bitsNA" "epsilon == ([],%a s. {}, %s. s=[])" - plus :: 'a bitsNA => 'a bitsNA + plus :: "'a bitsNA => 'a bitsNA" "plus == %(q,d,f). (q, %a s. d a s Un (if f s then d a q else {}), f)" - star :: 'a bitsNA => 'a bitsNA + star :: "'a bitsNA => 'a bitsNA" "star A == or epsilon (plus A)" -consts rexp2na :: 'a rexp => 'a bitsNA +consts rexp2na :: "'a rexp => 'a bitsNA" primrec "rexp2na Empty = ([], %a s. {}, %s. False)" "rexp2na(Atom a) = atom a" @@ -57,4 +57,384 @@ "rexp2na(Conc r s) = conc (rexp2na r) (rexp2na s)" "rexp2na(Star r) = star (rexp2na r)" +declare split_paired_all[simp] + +(******************************************************) +(* atom *) +(******************************************************) + +lemma fin_atom: "(fin (atom a) q) = (q = [False])" +by(simp add:atom_def) + +lemma start_atom: "start (atom a) = [True]" +by(simp add:atom_def) + +lemma in_step_atom_Some[simp]: + "(p,q) : step (atom a) b = (p=[True] & q=[False] & b=a)" +by (simp add: atom_def step_def) + +lemma False_False_in_steps_atom: + "([False],[False]) : steps (atom a) w = (w = [])" +apply (induct "w") + apply simp +apply (simp add: rel_comp_def) +done + +lemma start_fin_in_steps_atom: + "(start (atom a), [False]) : steps (atom a) w = (w = [a])" +apply (induct "w") + apply (simp add: start_atom) +apply (simp add: False_False_in_steps_atom rel_comp_def start_atom) +done + +lemma accepts_atom: + "accepts (atom a) w = (w = [a])" +by (simp add: accepts_conv_steps start_fin_in_steps_atom fin_atom) + +(******************************************************) +(* or *) +(******************************************************) + +(***** lift True/False over fin *****) + +lemma fin_or_True[iff]: + "!!L R. fin (or L R) (True#p) = fin L p" +by(simp add:or_def) + +lemma fin_or_False[iff]: + "!!L R. fin (or L R) (False#p) = fin R p" +by(simp add:or_def) + +(***** lift True/False over step *****) + +lemma True_in_step_or[iff]: +"!!L R. (True#p,q) : step (or L R) a = (? r. q = True#r & (p,r) : step L a)" +apply (simp add:or_def step_def) +apply blast +done + +lemma False_in_step_or[iff]: +"!!L R. (False#p,q) : step (or L R) a = (? r. q = False#r & (p,r) : step R a)" +apply (simp add:or_def step_def) +apply blast +done + + +(***** lift True/False over steps *****) + +lemma lift_True_over_steps_or[iff]: + "!!p. (True#p,q):steps (or L R) w = (? r. q = True # r & (p,r):steps L w)" +apply (induct "w") + apply force +apply force +done + +lemma lift_False_over_steps_or[iff]: + "!!p. (False#p,q):steps (or L R) w = (? r. q = False#r & (p,r):steps R w)" +apply (induct "w") + apply force +apply force +done + +(** From the start **) + +lemma start_step_or[iff]: + "!!L R. (start(or L R),q) : step(or L R) a = + (? p. (q = True#p & (start L,p) : step L a) | + (q = False#p & (start R,p) : step R a))" +apply (simp add:or_def step_def) +apply blast +done + +lemma steps_or: + "(start(or L R), q) : steps (or L R) w = + ( (w = [] & q = start(or L R)) | + (w ~= [] & (? p. q = True # p & (start L,p) : steps L w | + q = False # p & (start R,p) : steps R w)))" +apply (case_tac "w") + apply (simp) + apply blast +apply (simp) +apply blast +done + +lemma fin_start_or[iff]: + "!!L R. fin (or L R) (start(or L R)) = (fin L (start L) | fin R (start R))" +by (simp add:or_def) + +lemma accepts_or[iff]: + "accepts (or L R) w = (accepts L w | accepts R w)" +apply (simp add: accepts_conv_steps steps_or) +(* get rid of case_tac: *) +apply (case_tac "w = []") + apply auto +done + +(******************************************************) +(* conc *) +(******************************************************) + +(** True/False in fin **) + +lemma fin_conc_True[iff]: + "!!L R. fin (conc L R) (True#p) = (fin L p & fin R (start R))" +by(simp add:conc_def) + +lemma fin_conc_False[iff]: + "!!L R. fin (conc L R) (False#p) = fin R p" +by(simp add:conc_def) + + +(** True/False in step **) + +lemma True_step_conc[iff]: + "!!L R. (True#p,q) : step (conc L R) a = + ((? r. q=True#r & (p,r): step L a) | + (fin L p & (? r. q=False#r & (start R,r) : step R a)))" +apply (simp add:conc_def step_def) +apply blast +done + +lemma False_step_conc[iff]: + "!!L R. (False#p,q) : step (conc L R) a = + (? r. q = False#r & (p,r) : step R a)" +apply (simp add:conc_def step_def) +apply blast +done + +(** False in steps **) + +lemma False_steps_conc[iff]: + "!!p. (False#p,q): steps (conc L R) w = (? r. q=False#r & (p,r): steps R w)" +apply (induct "w") + apply fastsimp +apply force +done + +(** True in steps **) + +lemma True_True_steps_concI: + "!!L R p. (p,q) : steps L w ==> (True#p,True#q) : steps (conc L R) w" +apply (induct "w") + apply simp +apply simp +apply fast +done + +lemma True_False_step_conc[iff]: + "!!L R. (True#p,False#q) : step (conc L R) a = + (fin L p & (start R,q) : step R a)" +by simp + +lemma True_steps_concD[rule_format]: + "!p. (True#p,q) : steps (conc L R) w --> + ((? r. (p,r) : steps L w & q = True#r) | + (? u a v. w = u@a#v & + (? r. (p,r) : steps L u & fin L r & + (? s. (start R,s) : step R a & + (? t. (s,t) : steps R v & q = False#t)))))" +apply (induct "w") + apply simp +apply simp +apply (clarify del:disjCI) +apply (erule disjE) + apply (clarify del:disjCI) + apply (erule allE, erule impE, assumption) + apply (erule disjE) + apply blast + apply (rule disjI2) + apply (clarify) + apply simp + apply (rule_tac x = "a#u" in exI) + apply simp + apply blast +apply (rule disjI2) +apply (clarify) +apply simp +apply (rule_tac x = "[]" in exI) +apply simp +apply blast +done + +lemma True_steps_conc: + "(True#p,q) : steps (conc L R) w = + ((? r. (p,r) : steps L w & q = True#r) | + (? u a v. w = u@a#v & + (? r. (p,r) : steps L u & fin L r & + (? s. (start R,s) : step R a & + (? t. (s,t) : steps R v & q = False#t)))))" +by(force dest!: True_steps_concD intro!: True_True_steps_concI) + +(** starting from the start **) + +lemma start_conc: + "!!L R. start(conc L R) = True#start L" +by (simp add:conc_def) + +lemma final_conc: + "!!L R. fin(conc L R) p = ((fin R (start R) & (? s. p = True#s & fin L s)) | + (? s. p = False#s & fin R s))" +apply (simp add:conc_def split: list.split) +apply blast +done + +lemma accepts_conc: + "accepts (conc L R) w = (? u v. w = u@v & accepts L u & accepts R v)" +apply (simp add: accepts_conv_steps True_steps_conc final_conc start_conc) +apply (rule iffI) + apply (clarify) + apply (erule disjE) + apply (clarify) + apply (erule disjE) + apply (rule_tac x = "w" in exI) + apply simp + apply blast + apply blast + apply (erule disjE) + apply blast + apply (clarify) + apply (rule_tac x = "u" in exI) + apply simp + apply blast +apply (clarify) +apply (case_tac "v") + apply simp + apply blast +apply simp +apply blast +done + +(******************************************************) +(* epsilon *) +(******************************************************) + +lemma step_epsilon[simp]: "step epsilon a = {}" +by(simp add:epsilon_def step_def) + +lemma steps_epsilon: "((p,q) : steps epsilon w) = (w=[] & p=q)" +by (induct "w") auto + +lemma accepts_epsilon[iff]: "accepts epsilon w = (w = [])" +apply (simp add: steps_epsilon accepts_conv_steps) +apply (simp add: epsilon_def) +done + +(******************************************************) +(* plus *) +(******************************************************) + +lemma start_plus[simp]: "!!A. start (plus A) = start A" +by(simp add:plus_def) + +lemma fin_plus[iff]: "!!A. fin (plus A) = fin A" +by(simp add:plus_def) + +lemma step_plusI: + "!!A. (p,q) : step A a ==> (p,q) : step (plus A) a" +by(simp add:plus_def step_def) + +lemma steps_plusI: "!!p. (p,q) : steps A w ==> (p,q) : steps (plus A) w" +apply (induct "w") + apply simp +apply simp +apply (blast intro: step_plusI) +done + +lemma step_plus_conv[iff]: + "!!A. (p,r): step (plus A) a = + ( (p,r): step A a | fin A p & (start A,r) : step A a )" +by(simp add:plus_def step_def) + +lemma fin_steps_plusI: + "[| (start A,q) : steps A u; u ~= []; fin A p |] + ==> (p,q) : steps (plus A) u" +apply (case_tac "u") + apply blast +apply simp +apply (blast intro: steps_plusI) +done + +(* reverse list induction! Complicates matters for conc? *) +lemma start_steps_plusD[rule_format]: + "!r. (start A,r) : steps (plus A) w --> + (? us v. w = concat us @ v & + (!u:set us. accepts A u) & + (start A,r) : steps A v)" +apply (induct w rule: rev_induct) + apply simp + apply (rule_tac x = "[]" in exI) + apply simp +apply simp +apply (clarify) +apply (erule allE, erule impE, assumption) +apply (clarify) +apply (erule disjE) + apply (rule_tac x = "us" in exI) + apply (simp) + apply blast +apply (rule_tac x = "us@[v]" in exI) +apply (simp add: accepts_conv_steps) +apply blast +done + +lemma steps_star_cycle[rule_format]: + "us ~= [] --> (!u : set us. accepts A u) --> accepts (plus A) (concat us)" +apply (simp add: accepts_conv_steps) +apply (induct us rule: rev_induct) + apply simp +apply (rename_tac u us) +apply simp +apply (clarify) +apply (case_tac "us = []") + apply (simp) + apply (blast intro: steps_plusI fin_steps_plusI) +apply (clarify) +apply (case_tac "u = []") + apply (simp) + apply (blast intro: steps_plusI fin_steps_plusI) +apply (blast intro: steps_plusI fin_steps_plusI) +done + +lemma accepts_plus[iff]: + "accepts (plus A) w = + (? us. us ~= [] & w = concat us & (!u : set us. accepts A u))" +apply (rule iffI) + apply (simp add: accepts_conv_steps) + apply (clarify) + apply (drule start_steps_plusD) + apply (clarify) + apply (rule_tac x = "us@[v]" in exI) + apply (simp add: accepts_conv_steps) + apply blast +apply (blast intro: steps_star_cycle) +done + +(******************************************************) +(* star *) +(******************************************************) + +lemma accepts_star: + "accepts (star A) w = (? us. (!u : set us. accepts A u) & w = concat us)" +apply(unfold star_def) +apply (rule iffI) + apply (clarify) + apply (erule disjE) + apply (rule_tac x = "[]" in exI) + apply simp + apply blast +apply force +done + +(***** Correctness of r2n *****) + +lemma accepts_rexp2na: + "!!w. accepts (rexp2na r) w = (w : lang r)" +apply (induct "r") + apply (simp add: accepts_conv_steps) + apply (simp add: accepts_atom) + apply (simp) + apply (simp add: accepts_conc RegSet.conc_def) +apply (simp add: accepts_star in_star) +done + end diff -r 0f626a712456 -r 3d6ed7eedfc8 src/HOL/Lex/RegExp2NAe.ML --- a/src/HOL/Lex/RegExp2NAe.ML Fri Mar 05 15:30:49 2004 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,630 +0,0 @@ -(* Title: HOL/Lex/RegExp2NAe.ML - ID: $Id$ - Author: Tobias Nipkow - Copyright 1998 TUM -*) - -(******************************************************) -(* atom *) -(******************************************************) - -Goalw [atom_def] "(fin (atom a) q) = (q = [False])"; -by (Simp_tac 1); -qed "fin_atom"; - -Goalw [atom_def] "start (atom a) = [True]"; -by (Simp_tac 1); -qed "start_atom"; - -(* Use {x. False} = {}? *) - -Goalw [atom_def,thm"step_def"] - "eps(atom a) = {}"; -by (Simp_tac 1); -qed "eps_atom"; -Addsimps [eps_atom]; - -Goalw [atom_def,thm"step_def"] - "(p,q) : step (atom a) (Some b) = (p=[True] & q=[False] & b=a)"; -by (Simp_tac 1); -qed "in_step_atom_Some"; -Addsimps [in_step_atom_Some]; - -Goal "([False],[False]) : steps (atom a) w = (w = [])"; -by (induct_tac "w" 1); - by (Simp_tac 1); -by (asm_simp_tac (simpset() addsimps [rel_comp_def]) 1); -qed "False_False_in_steps_atom"; - -Goal "(start (atom a), [False]) : steps (atom a) w = (w = [a])"; -by (induct_tac "w" 1); - by (asm_simp_tac (simpset() addsimps [start_atom,thm"rtrancl_empty"]) 1); -by (asm_full_simp_tac (simpset() - addsimps [False_False_in_steps_atom,rel_comp_def,start_atom]) 1); -qed "start_fin_in_steps_atom"; - -Goal "accepts (atom a) w = (w = [a])"; -by (simp_tac(simpset() addsimps - [thm"accepts_def",start_fin_in_steps_atom,fin_atom]) 1); -qed "accepts_atom"; - - -(******************************************************) -(* or *) -(******************************************************) - -(***** True/False ueber fin anheben *****) - -Goalw [or_def] - "!L R. fin (or L R) (True#p) = fin L p"; -by (Simp_tac 1); -qed_spec_mp "fin_or_True"; - -Goalw [or_def] - "!L R. fin (or L R) (False#p) = fin R p"; -by (Simp_tac 1); -qed_spec_mp "fin_or_False"; - -AddIffs [fin_or_True,fin_or_False]; - -(***** True/False ueber step anheben *****) - -Goalw [or_def,thm"step_def"] -"!L R. (True#p,q) : step (or L R) a = (? r. q = True#r & (p,r) : step L a)"; -by (Simp_tac 1); -by (Blast_tac 1); -qed_spec_mp "True_in_step_or"; - -Goalw [or_def,thm"step_def"] -"!L R. (False#p,q) : step (or L R) a = (? r. q = False#r & (p,r) : step R a)"; -by (Simp_tac 1); -by (Blast_tac 1); -qed_spec_mp "False_in_step_or"; - -AddIffs [True_in_step_or,False_in_step_or]; - -(***** True/False ueber epsclosure anheben *****) - -Goal - "(tp,tq) : (eps(or L R))^* ==> \ -\ !p. tp = True#p --> (? q. (p,q) : (eps L)^* & tq = True#q)"; -by (etac rtrancl_induct 1); - by (Blast_tac 1); -by (Clarify_tac 1); -by (Asm_full_simp_tac 1); -by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); -val lemma1a = result(); - -Goal - "(tp,tq) : (eps(or L R))^* ==> \ -\ !p. tp = False#p --> (? q. (p,q) : (eps R)^* & tq = False#q)"; -by (etac rtrancl_induct 1); - by (Blast_tac 1); -by (Clarify_tac 1); -by (Asm_full_simp_tac 1); -by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); -val lemma1b = result(); - -Goal - "(p,q) : (eps L)^* ==> (True#p, True#q) : (eps(or L R))^*"; -by (etac rtrancl_induct 1); - by (Blast_tac 1); -by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); -val lemma2a = result(); - -Goal - "(p,q) : (eps R)^* ==> (False#p, False#q) : (eps(or L R))^*"; -by (etac rtrancl_induct 1); - by (Blast_tac 1); -by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); -val lemma2b = result(); - -Goal - "(True#p,q) : (eps(or L R))^* = (? r. q = True#r & (p,r) : (eps L)^*)"; -by (blast_tac (claset() addDs [lemma1a,lemma2a]) 1); -qed "True_epsclosure_or"; - -Goal - "(False#p,q) : (eps(or L R))^* = (? r. q = False#r & (p,r) : (eps R)^*)"; -by (blast_tac (claset() addDs [lemma1b,lemma2b]) 1); -qed "False_epsclosure_or"; - -AddIffs [True_epsclosure_or,False_epsclosure_or]; - -(***** True/False ueber steps anheben *****) - -Goal - "!p. (True#p,q):steps (or L R) w = (? r. q = True # r & (p,r):steps L w)"; -by (induct_tac "w" 1); - by Auto_tac; -by (Force_tac 1); -qed_spec_mp "lift_True_over_steps_or"; - -Goal - "!p. (False#p,q):steps (or L R) w = (? r. q = False#r & (p,r):steps R w)"; -by (induct_tac "w" 1); - by Auto_tac; -by (Force_tac 1); -qed_spec_mp "lift_False_over_steps_or"; - -AddIffs [lift_True_over_steps_or,lift_False_over_steps_or]; - - -(***** Epsilonhuelle des Startzustands *****) - -Goal - "R^* = Id Un (R^* O R)"; -by (rtac set_ext 1); -by (split_all_tac 1); -by (rtac iffI 1); - by (etac rtrancl_induct 1); - by (Blast_tac 1); - by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); -by (blast_tac (claset() addIs [converse_rtrancl_into_rtrancl]) 1); -qed "unfold_rtrancl2"; - -Goal - "(p,q) : R^* = (q = p | (? r. (p,r) : R & (r,q) : R^*))"; -by (rtac (unfold_rtrancl2 RS equalityE) 1); -by (Blast_tac 1); -qed "in_unfold_rtrancl2"; - -val epsclosure_start_step_or = - read_instantiate [("p","start(or L R)")] in_unfold_rtrancl2; -AddIffs [epsclosure_start_step_or]; - -Goalw [or_def,thm"step_def"] - "!L R. (start(or L R),q) : eps(or L R) = \ -\ (q = True#start L | q = False#start R)"; -by (Simp_tac 1); -qed_spec_mp "start_eps_or"; -AddIffs [start_eps_or]; - -Goalw [or_def,thm"step_def"] - "!L R. (start(or L R),q) ~: step (or L R) (Some a)"; -by (Simp_tac 1); -qed_spec_mp "not_start_step_or_Some"; -AddIffs [not_start_step_or_Some]; - -Goal - "(start(or L R), q) : steps (or L R) w = \ -\ ( (w = [] & q = start(or L R)) | \ -\ (? p. q = True # p & (start L,p) : steps L w | \ -\ q = False # p & (start R,p) : steps R w) )"; -by (case_tac "w" 1); - by (Asm_simp_tac 1); - by (Blast_tac 1); -by (Asm_simp_tac 1); -by (Blast_tac 1); -qed "steps_or"; - -Goalw [or_def] - "!L R. ~ fin (or L R) (start(or L R))"; -by (Simp_tac 1); -qed_spec_mp "start_or_not_final"; -AddIffs [start_or_not_final]; - -Goalw [thm"accepts_def"] - "accepts (or L R) w = (accepts L w | accepts R w)"; -by (simp_tac (simpset() addsimps [steps_or]) 1); -by Auto_tac; -qed "accepts_or"; - - -(******************************************************) -(* conc *) -(******************************************************) - -(** True/False in fin **) - -Goalw [conc_def] - "!L R. fin (conc L R) (True#p) = False"; -by (Simp_tac 1); -qed_spec_mp "fin_conc_True"; - -Goalw [conc_def] - "!L R. fin (conc L R) (False#p) = fin R p"; -by (Simp_tac 1); -qed "fin_conc_False"; - -AddIffs [fin_conc_True,fin_conc_False]; - -(** True/False in step **) - -Goalw [conc_def,thm"step_def"] - "!L R. (True#p,q) : step (conc L R) a = \ -\ ((? r. q=True#r & (p,r): step L a) | \ -\ (fin L p & a=None & q=False#start R))"; -by (Simp_tac 1); -by (Blast_tac 1); -qed_spec_mp "True_step_conc"; - -Goalw [conc_def,thm"step_def"] - "!L R. (False#p,q) : step (conc L R) a = \ -\ (? r. q = False#r & (p,r) : step R a)"; -by (Simp_tac 1); -by (Blast_tac 1); -qed_spec_mp "False_step_conc"; - -AddIffs [True_step_conc, False_step_conc]; - -(** False in epsclosure **) - -Goal - "(tp,tq) : (eps(conc L R))^* ==> \ -\ !p. tp = False#p --> (? q. (p,q) : (eps R)^* & tq = False#q)"; -by (etac rtrancl_induct 1); - by (Blast_tac 1); -by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); -qed "lemma1b"; - -Goal - "(p,q) : (eps R)^* ==> (False#p, False#q) : (eps(conc L R))^*"; -by (etac rtrancl_induct 1); - by (Blast_tac 1); -by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); -val lemma2b = result(); - -Goal - "((False # p, q) : (eps (conc L R))^*) = \ -\ (? r. q = False # r & (p, r) : (eps R)^*)"; -by (rtac iffI 1); - by (blast_tac (claset() addDs [lemma1b]) 1); -by (blast_tac (claset() addDs [lemma2b]) 1); -qed "False_epsclosure_conc"; -AddIffs [False_epsclosure_conc]; - -(** False in steps **) - -Goal - "!p. (False#p,q): steps (conc L R) w = (? r. q=False#r & (p,r): steps R w)"; -by (induct_tac "w" 1); - by (Simp_tac 1); -by (Simp_tac 1); -by (Fast_tac 1); (*MUCH faster than Blast_tac*) -qed_spec_mp "False_steps_conc"; -AddIffs [False_steps_conc]; - -(** True in epsclosure **) - -Goal - "(p,q): (eps L)^* ==> (True#p,True#q) : (eps(conc L R))^*"; -by (etac rtrancl_induct 1); - by (Blast_tac 1); -by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); -qed "True_True_eps_concI"; - -Goal - "!p. (p,q) : steps L w --> (True#p,True#q) : steps (conc L R) w"; -by (induct_tac "w" 1); - by (simp_tac (simpset() addsimps [True_True_eps_concI]) 1); -by (Simp_tac 1); -by (blast_tac (claset() addIs [True_True_eps_concI]) 1); -qed_spec_mp "True_True_steps_concI"; - -Goal - "(tp,tq) : (eps(conc L R))^* ==> \ -\ !p. tp = True#p --> \ -\ (? q. tq = True#q & (p,q) : (eps L)^*) | \ -\ (? q r. tq = False#q & (p,r):(eps L)^* & fin L r & (start R,q) : (eps R)^*)"; -by (etac rtrancl_induct 1); - by (Blast_tac 1); -by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); -val lemma1a = result(); - -Goal - "(p, q) : (eps L)^* ==> (True#p, True#q) : (eps(conc L R))^*"; -by (etac rtrancl_induct 1); - by (Blast_tac 1); -by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); -val lemma2a = result(); - -Goalw [conc_def,thm"step_def"] - "!!L R. (p,q) : step R None ==> (False#p, False#q) : step (conc L R) None"; -by (split_all_tac 1); -by (Asm_full_simp_tac 1); -val lemma = result(); - -Goal - "(p,q) : (eps R)^* ==> (False#p, False#q) : (eps(conc L R))^*"; -by (etac rtrancl_induct 1); - by (Blast_tac 1); -by (dtac lemma 1); -by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); -val lemma2b = result(); - -Goalw [conc_def,thm"step_def"] - "!!L R. fin L p ==> (True#p, False#start R) : eps(conc L R)"; -by (split_all_tac 1); -by (Asm_full_simp_tac 1); -qed "True_False_eps_concI"; - -Goal - "((True#p,q) : (eps(conc L R))^*) = \ -\ ((? r. (p,r) : (eps L)^* & q = True#r) | \ -\ (? r. (p,r) : (eps L)^* & fin L r & \ -\ (? s. (start R, s) : (eps R)^* & q = False#s)))"; -by (rtac iffI 1); - by (blast_tac (claset() addDs [lemma1a]) 1); -by (etac disjE 1); - by (blast_tac (claset() addIs [lemma2a]) 1); -by (Clarify_tac 1); -by (rtac (rtrancl_trans) 1); -by (etac lemma2a 1); -by (rtac converse_rtrancl_into_rtrancl 1); -by (etac True_False_eps_concI 1); -by (etac lemma2b 1); -qed "True_epsclosure_conc"; -AddIffs [True_epsclosure_conc]; - -(** True in steps **) - -Goal - "!p. (True#p,q) : steps (conc L R) w --> \ -\ ((? r. (p,r) : steps L w & q = True#r) | \ -\ (? u v. w = u@v & (? r. (p,r) : steps L u & fin L r & \ -\ (? s. (start R,s) : steps R v & q = False#s))))"; -by (induct_tac "w" 1); - by (Simp_tac 1); -by (Simp_tac 1); -by (clarify_tac (claset() delrules [disjCI]) 1); - by (etac disjE 1); - by (clarify_tac (claset() delrules [disjCI]) 1); - by (etac disjE 1); - by (clarify_tac (claset() delrules [disjCI]) 1); - by (etac allE 1 THEN mp_tac 1); - by (etac disjE 1); - by (Blast_tac 1); - by (rtac disjI2 1); - by (Clarify_tac 1); - by (Simp_tac 1); - by (res_inst_tac[("x","a#u")] exI 1); - by (Simp_tac 1); - by (Blast_tac 1); - by (Blast_tac 1); -by (rtac disjI2 1); -by (Clarify_tac 1); -by (Simp_tac 1); -by (res_inst_tac[("x","[]")] exI 1); -by (Simp_tac 1); -by (Blast_tac 1); -qed_spec_mp "True_steps_concD"; - -Goal - "(True#p,q) : steps (conc L R) w = \ -\ ((? r. (p,r) : steps L w & q = True#r) | \ -\ (? u v. w = u@v & (? r. (p,r) : steps L u & fin L r & \ -\ (? s. (start R,s) : steps R v & q = False#s))))"; -by (blast_tac (claset() addDs [True_steps_concD] - addIs [True_True_steps_concI,thm"in_steps_epsclosure"]) 1); -qed "True_steps_conc"; - -(** starting from the start **) - -Goalw [conc_def] - "!L R. start(conc L R) = True#start L"; -by (Simp_tac 1); -qed_spec_mp "start_conc"; - -Goalw [conc_def] - "!L R. fin(conc L R) p = (? s. p = False#s & fin R s)"; -by (simp_tac (simpset() addsplits [thm"list.split"]) 1); -qed_spec_mp "final_conc"; - -Goal - "accepts (conc L R) w = (? u v. w = u@v & accepts L u & accepts R v)"; -by (simp_tac (simpset() addsimps - [thm"accepts_def",True_steps_conc,final_conc,start_conc]) 1); -by (Blast_tac 1); -qed "accepts_conc"; - -(******************************************************) -(* star *) -(******************************************************) - -Goalw [star_def,thm"step_def"] - "!A. (True#p,q) : eps(star A) = \ -\ ( (? r. q = True#r & (p,r) : eps A) | (fin A p & q = True#start A) )"; -by (Simp_tac 1); -by (Blast_tac 1); -qed_spec_mp "True_in_eps_star"; -AddIffs [True_in_eps_star]; - -Goalw [star_def,thm"step_def"] - "!A. (p,q) : step A a --> (True#p, True#q) : step (star A) a"; -by (Simp_tac 1); -qed_spec_mp "True_True_step_starI"; - -Goal - "(p,r) : (eps A)^* ==> (True#p, True#r) : (eps(star A))^*"; -by (etac rtrancl_induct 1); - by (Blast_tac 1); -by (blast_tac (claset() addIs [True_True_step_starI,rtrancl_into_rtrancl]) 1); -qed_spec_mp "True_True_eps_starI"; - -Goalw [star_def,thm"step_def"] - "!A. fin A p --> (True#p,True#start A) : eps(star A)"; -by (Simp_tac 1); -qed_spec_mp "True_start_eps_starI"; - -Goal - "(tp,s) : (eps(star A))^* ==> (! p. tp = True#p --> \ -\ (? r. ((p,r) : (eps A)^* | \ -\ (? q. (p,q) : (eps A)^* & fin A q & (start A,r) : (eps A)^*)) & \ -\ s = True#r))"; -by (etac rtrancl_induct 1); - by (Simp_tac 1); -by (Clarify_tac 1); -by (Asm_full_simp_tac 1); -by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1); -val lemma = result(); - -Goal - "((True#p,s) : (eps(star A))^*) = \ -\ (? r. ((p,r) : (eps A)^* | \ -\ (? q. (p,q) : (eps A)^* & fin A q & (start A,r) : (eps A)^*)) & \ -\ s = True#r)"; -by (rtac iffI 1); - by (dtac lemma 1); - by (Blast_tac 1); -(* Why can't blast_tac do the rest? *) -by (Clarify_tac 1); -by (etac disjE 1); -by (etac True_True_eps_starI 1); -by (Clarify_tac 1); -by (rtac rtrancl_trans 1); -by (etac True_True_eps_starI 1); -by (rtac rtrancl_trans 1); -by (rtac r_into_rtrancl 1); -by (etac True_start_eps_starI 1); -by (etac True_True_eps_starI 1); -qed "True_eps_star"; -AddIffs [True_eps_star]; - -(** True in step Some **) - -Goalw [star_def,thm"step_def"] - "!A. (True#p,r): step (star A) (Some a) = \ -\ (? q. (p,q): step A (Some a) & r=True#q)"; -by (Simp_tac 1); -by (Blast_tac 1); -qed_spec_mp "True_step_star"; -AddIffs [True_step_star]; - - -(** True in steps **) - -(* reverse list induction! Complicates matters for conc? *) -Goal - "!rr. (True#start A,rr) : steps (star A) w --> \ -\ (? us v. w = concat us @ v & \ -\ (!u:set us. accepts A u) & \ -\ (? r. (start A,r) : steps A v & rr = True#r))"; -by (res_inst_tac [("xs","w")] rev_induct 1); - by (Asm_full_simp_tac 1); - by (Clarify_tac 1); - by (res_inst_tac [("x","[]")] exI 1); - by (etac disjE 1); - by (Asm_simp_tac 1); - by (Clarify_tac 1); - by (Asm_simp_tac 1); -by (simp_tac (simpset() addsimps [O_assoc,thm"epsclosure_steps"]) 1); -by (Clarify_tac 1); -by (etac allE 1 THEN mp_tac 1); -by (Clarify_tac 1); -by (etac disjE 1); - by (res_inst_tac [("x","us")] exI 1); - by (res_inst_tac [("x","v@[x]")] exI 1); - by (asm_simp_tac (simpset() addsimps [O_assoc,thm"epsclosure_steps"]) 1); - by (Blast_tac 1); -by (Clarify_tac 1); -by (res_inst_tac [("x","us@[v@[x]]")] exI 1); -by (res_inst_tac [("x","[]")] exI 1); -by (asm_full_simp_tac (simpset() addsimps [thm"accepts_def"]) 1); -by (Blast_tac 1); -qed_spec_mp "True_start_steps_starD"; - -Goal "!p. (p,q) : steps A w --> (True#p,True#q) : steps (star A) w"; -by (induct_tac "w" 1); - by (Simp_tac 1); -by (Simp_tac 1); -by (blast_tac (claset() addIs [True_True_eps_starI,True_True_step_starI]) 1); -qed_spec_mp "True_True_steps_starI"; - -Goalw [thm"accepts_def"] - "(!u : set us. accepts A u) --> \ -\ (True#start A,True#start A) : steps (star A) (concat us)"; -by (induct_tac "us" 1); - by (Simp_tac 1); -by (Simp_tac 1); -by (blast_tac (claset() addIs [True_True_steps_starI,True_start_eps_starI,thm"in_epsclosure_steps"]) 1); -qed_spec_mp "steps_star_cycle"; - -(* Better stated directly with start(star A)? Loop in star A back to start(star A)?*) -Goal - "(True#start A,rr) : steps (star A) w = \ -\ (? us v. w = concat us @ v & \ -\ (!u:set us. accepts A u) & \ -\ (? r. (start A,r) : steps A v & rr = True#r))"; -by (rtac iffI 1); - by (etac True_start_steps_starD 1); -by (Clarify_tac 1); -by (Asm_simp_tac 1); -by (blast_tac (claset() addIs [True_True_steps_starI,steps_star_cycle]) 1); -qed "True_start_steps_star"; - -(** the start state **) - -Goalw [star_def,thm"step_def"] - "!A. (start(star A),r) : step (star A) a = (a=None & r = True#start A)"; -by (Simp_tac 1); -qed_spec_mp "start_step_star"; -AddIffs [start_step_star]; - -val epsclosure_start_step_star = - read_instantiate [("p","start(star A)")] in_unfold_rtrancl2; - -Goal - "(start(star A),r) : steps (star A) w = \ -\ ((w=[] & r= start(star A)) | (True#start A,r) : steps (star A) w)"; -by (rtac iffI 1); - by (case_tac "w" 1); - by (asm_full_simp_tac (simpset() addsimps - [epsclosure_start_step_star]) 1); - by (Asm_full_simp_tac 1); - by (Clarify_tac 1); - by (asm_full_simp_tac (simpset() addsimps - [epsclosure_start_step_star]) 1); - by (Blast_tac 1); -by (etac disjE 1); - by (Asm_simp_tac 1); -by (blast_tac (claset() addIs [thm"in_steps_epsclosure"]) 1); -qed "start_steps_star"; - -Goalw [star_def] "!A. fin (star A) (True#p) = fin A p"; -by (Simp_tac 1); -qed_spec_mp "fin_star_True"; -AddIffs [fin_star_True]; - -Goalw [star_def] "!A. fin (star A) (start(star A))"; -by (Simp_tac 1); -qed_spec_mp "fin_star_start"; -AddIffs [fin_star_start]; - -(* too complex! Simpler if loop back to start(star A)? *) -Goalw [thm"accepts_def"] - "accepts (star A) w = \ -\ (? us. (!u : set(us). accepts A u) & (w = concat us) )"; -by (simp_tac (simpset() addsimps [start_steps_star,True_start_steps_star]) 1); -by (rtac iffI 1); - by (Clarify_tac 1); - by (etac disjE 1); - by (Clarify_tac 1); - by (Simp_tac 1); - by (res_inst_tac [("x","[]")] exI 1); - by (Simp_tac 1); - by (Clarify_tac 1); - by (res_inst_tac [("x","us@[v]")] exI 1); - by (asm_full_simp_tac (simpset() addsimps [thm"accepts_def"]) 1); - by (Blast_tac 1); -by (Clarify_tac 1); -by (res_inst_tac [("xs","us")] rev_exhaust 1); - by (Asm_simp_tac 1); - by (Blast_tac 1); -by (Clarify_tac 1); -by (asm_full_simp_tac (simpset() addsimps [thm"accepts_def"]) 1); -by (Blast_tac 1); -qed "accepts_star"; - - -(***** Correctness of r2n *****) - -Goal - "!w. accepts (rexp2nae r) w = (w : lang r)"; -by (induct_tac "r" 1); - by (simp_tac (simpset() addsimps [thm"accepts_def"]) 1); - by (simp_tac(simpset() addsimps [accepts_atom]) 1); - by (asm_simp_tac (simpset() addsimps [accepts_or]) 1); - by (asm_simp_tac (simpset() addsimps [accepts_conc,thm"RegSet.conc_def"]) 1); -by (asm_simp_tac (simpset() addsimps [accepts_star,thm"in_star"]) 1); -qed "accepts_rexp2nae"; diff -r 0f626a712456 -r 3d6ed7eedfc8 src/HOL/Lex/RegExp2NAe.thy --- a/src/HOL/Lex/RegExp2NAe.thy Fri Mar 05 15:30:49 2004 +0100 +++ b/src/HOL/Lex/RegExp2NAe.thy Sat Mar 06 19:31:27 2004 +0100 @@ -7,20 +7,20 @@ into nondeterministic automata with epsilon transitions *) -RegExp2NAe = RegExp + NAe + +theory RegExp2NAe = RegExp + NAe: -types 'a bitsNAe = ('a,bool list)nae +types 'a bitsNAe = "('a,bool list)nae" -syntax "##" :: 'a => 'a list set => 'a list set (infixr 65) +syntax "##" :: "'a => 'a list set => 'a list set" (infixr 65) translations "x ## S" == "Cons x ` S" constdefs - atom :: 'a => 'a bitsNAe + atom :: "'a => 'a bitsNAe" "atom a == ([True], %b s. if s=[True] & b=Some a then {[False]} else {}, %s. s=[False])" - or :: 'a bitsNAe => 'a bitsNAe => 'a bitsNAe + or :: "'a bitsNAe => 'a bitsNAe => 'a bitsNAe" "or == %(ql,dl,fl)(qr,dr,fr). ([], %a s. case s of @@ -29,7 +29,7 @@ else False ## dr a s, %s. case s of [] => False | left#s => if left then fl s else fr s)" - conc :: 'a bitsNAe => 'a bitsNAe => 'a bitsNAe + conc :: "'a bitsNAe => 'a bitsNAe => 'a bitsNAe" "conc == %(ql,dl,fl)(qr,dr,fr). (True#ql, %a s. case s of @@ -39,7 +39,7 @@ else False ## dr a s, %s. case s of [] => False | left#s => ~left & fr s)" - star :: 'a bitsNAe => 'a bitsNAe + star :: "'a bitsNAe => 'a bitsNAe" "star == %(q,d,f). ([], %a s. case s of @@ -49,7 +49,7 @@ else {}, %s. case s of [] => True | left#s => left & f s)" -consts rexp2nae :: 'a rexp => 'a bitsNAe +consts rexp2nae :: "'a rexp => 'a bitsNAe" primrec "rexp2nae Empty = ([], %a s. {}, %s. False)" "rexp2nae(Atom a) = atom a" @@ -57,4 +57,566 @@ "rexp2nae(Conc r s) = conc (rexp2nae r) (rexp2nae s)" "rexp2nae(Star r) = star (rexp2nae r)" +declare split_paired_all[simp] + +(******************************************************) +(* atom *) +(******************************************************) + +lemma fin_atom: "(fin (atom a) q) = (q = [False])" +by(simp add:atom_def) + +lemma start_atom: "start (atom a) = [True]" +by(simp add:atom_def) + +(* Use {x. False} = {}? *) + +lemma eps_atom[simp]: + "eps(atom a) = {}" +by (simp add:atom_def step_def) + +lemma in_step_atom_Some[simp]: + "(p,q) : step (atom a) (Some b) = (p=[True] & q=[False] & b=a)" +by (simp add:atom_def step_def) + +lemma False_False_in_steps_atom: + "([False],[False]) : steps (atom a) w = (w = [])" +apply (induct "w") + apply (simp) +apply (simp add: rel_comp_def) +done + +lemma start_fin_in_steps_atom: + "(start (atom a), [False]) : steps (atom a) w = (w = [a])" +apply (induct "w") + apply (simp add: start_atom rtrancl_empty) +apply (simp add: False_False_in_steps_atom rel_comp_def start_atom) +done + +lemma accepts_atom: "accepts (atom a) w = (w = [a])" +by (simp add: accepts_def start_fin_in_steps_atom fin_atom) + + +(******************************************************) +(* or *) +(******************************************************) + +(***** lift True/False over fin *****) + +lemma fin_or_True[iff]: + "!!L R. fin (or L R) (True#p) = fin L p" +by(simp add:or_def) + +lemma fin_or_False[iff]: + "!!L R. fin (or L R) (False#p) = fin R p" +by(simp add:or_def) + +(***** lift True/False over step *****) + +lemma True_in_step_or[iff]: +"!!L R. (True#p,q) : step (or L R) a = (? r. q = True#r & (p,r) : step L a)" +apply (simp add:or_def step_def) +apply blast +done + +lemma False_in_step_or[iff]: +"!!L R. (False#p,q) : step (or L R) a = (? r. q = False#r & (p,r) : step R a)" +apply (simp add:or_def step_def) +apply blast +done + + +(***** lift True/False over epsclosure *****) + +lemma lemma1a: + "(tp,tq) : (eps(or L R))^* ==> + (!!p. tp = True#p ==> ? q. (p,q) : (eps L)^* & tq = True#q)" +apply (induct rule:rtrancl_induct) + apply (blast) +apply (clarify) +apply (simp) +apply (blast intro: rtrancl_into_rtrancl) +done + +lemma lemma1b: + "(tp,tq) : (eps(or L R))^* ==> + (!!p. tp = False#p ==> ? q. (p,q) : (eps R)^* & tq = False#q)" +apply (induct rule:rtrancl_induct) + apply (blast) +apply (clarify) +apply (simp) +apply (blast intro: rtrancl_into_rtrancl) +done + +lemma lemma2a: + "(p,q) : (eps L)^* ==> (True#p, True#q) : (eps(or L R))^*" +apply (induct rule: rtrancl_induct) + apply (blast) +apply (blast intro: rtrancl_into_rtrancl) +done + +lemma lemma2b: + "(p,q) : (eps R)^* ==> (False#p, False#q) : (eps(or L R))^*" +apply (induct rule: rtrancl_induct) + apply (blast) +apply (blast intro: rtrancl_into_rtrancl) +done + +lemma True_epsclosure_or[iff]: + "(True#p,q) : (eps(or L R))^* = (? r. q = True#r & (p,r) : (eps L)^*)" +by (blast dest: lemma1a lemma2a) + +lemma False_epsclosure_or[iff]: + "(False#p,q) : (eps(or L R))^* = (? r. q = False#r & (p,r) : (eps R)^*)" +by (blast dest: lemma1b lemma2b) + +(***** lift True/False over steps *****) + +lemma lift_True_over_steps_or[iff]: + "!!p. (True#p,q):steps (or L R) w = (? r. q = True # r & (p,r):steps L w)" +apply (induct "w") + apply auto +apply force +done + +lemma lift_False_over_steps_or[iff]: + "!!p. (False#p,q):steps (or L R) w = (? r. q = False#r & (p,r):steps R w)" +apply (induct "w") + apply auto +apply (force) +done + +(***** Epsilon closure of start state *****) + +lemma unfold_rtrancl2: + "R^* = Id Un (R^* O R)" +apply (rule set_ext) +apply (simp) +apply (rule iffI) + apply (erule rtrancl_induct) + apply (blast) + apply (blast intro: rtrancl_into_rtrancl) +apply (blast intro: converse_rtrancl_into_rtrancl) +done + +lemma in_unfold_rtrancl2: + "(p,q) : R^* = (q = p | (? r. (p,r) : R & (r,q) : R^*))" +apply (rule unfold_rtrancl2[THEN equalityE]) +apply (blast) +done + +lemmas [iff] = in_unfold_rtrancl2[where p = "start(or L R)", standard] + +lemma start_eps_or[iff]: + "!!L R. (start(or L R),q) : eps(or L R) = + (q = True#start L | q = False#start R)" +by (simp add:or_def step_def) + +lemma not_start_step_or_Some[iff]: + "!!L R. (start(or L R),q) ~: step (or L R) (Some a)" +by (simp add:or_def step_def) + +lemma steps_or: + "(start(or L R), q) : steps (or L R) w = + ( (w = [] & q = start(or L R)) | + (? p. q = True # p & (start L,p) : steps L w | + q = False # p & (start R,p) : steps R w) )" +apply (case_tac "w") + apply (simp) + apply (blast) +apply (simp) +apply (blast) +done + +lemma start_or_not_final[iff]: + "!!L R. ~ fin (or L R) (start(or L R))" +by (simp add:or_def) + +lemma accepts_or: + "accepts (or L R) w = (accepts L w | accepts R w)" +apply (simp add:accepts_def steps_or) + apply auto +done + + +(******************************************************) +(* conc *) +(******************************************************) + +(** True/False in fin **) + +lemma in_conc_True[iff]: + "!!L R. fin (conc L R) (True#p) = False" +by (simp add:conc_def) + +lemma fin_conc_False[iff]: + "!!L R. fin (conc L R) (False#p) = fin R p" +by (simp add:conc_def) + +(** True/False in step **) + +lemma True_step_conc[iff]: + "!!L R. (True#p,q) : step (conc L R) a = + ((? r. q=True#r & (p,r): step L a) | + (fin L p & a=None & q=False#start R))" +by (simp add:conc_def step_def) (blast) + +lemma False_step_conc[iff]: + "!!L R. (False#p,q) : step (conc L R) a = + (? r. q = False#r & (p,r) : step R a)" +by (simp add:conc_def step_def) (blast) + +(** False in epsclosure **) + +lemma lemma1b: + "(tp,tq) : (eps(conc L R))^* ==> + (!!p. tp = False#p ==> ? q. (p,q) : (eps R)^* & tq = False#q)" +apply (induct rule: rtrancl_induct) + apply (blast) +apply (blast intro: rtrancl_into_rtrancl) +done + +lemma lemma2b: + "(p,q) : (eps R)^* ==> (False#p, False#q) : (eps(conc L R))^*" +apply (induct rule: rtrancl_induct) + apply (blast) +apply (blast intro: rtrancl_into_rtrancl) +done + +lemma False_epsclosure_conc[iff]: + "((False # p, q) : (eps (conc L R))^*) = + (? r. q = False # r & (p, r) : (eps R)^*)" +apply (rule iffI) + apply (blast dest: lemma1b) +apply (blast dest: lemma2b) +done + +(** False in steps **) + +lemma False_steps_conc[iff]: + "!!p. (False#p,q): steps (conc L R) w = (? r. q=False#r & (p,r): steps R w)" +apply (induct "w") + apply (simp) +apply (simp) +apply (fast) (*MUCH faster than blast*) +done + +(** True in epsclosure **) + +lemma True_True_eps_concI: + "(p,q): (eps L)^* ==> (True#p,True#q) : (eps(conc L R))^*" +apply (induct rule: rtrancl_induct) + apply (blast) +apply (blast intro: rtrancl_into_rtrancl) +done + +lemma True_True_steps_concI: + "!!p. (p,q) : steps L w ==> (True#p,True#q) : steps (conc L R) w" +apply (induct "w") + apply (simp add: True_True_eps_concI) +apply (simp) +apply (blast intro: True_True_eps_concI) +done + +lemma lemma1a: + "(tp,tq) : (eps(conc L R))^* ==> + (!!p. tp = True#p ==> + (? q. tq = True#q & (p,q) : (eps L)^*) | + (? q r. tq = False#q & (p,r):(eps L)^* & fin L r & (start R,q) : (eps R)^*))" +apply (induct rule: rtrancl_induct) + apply (blast) +apply (blast intro: rtrancl_into_rtrancl) +done + +lemma lemma2a: + "(p, q) : (eps L)^* ==> (True#p, True#q) : (eps(conc L R))^*" +apply (induct rule: rtrancl_induct) + apply (blast) +apply (blast intro: rtrancl_into_rtrancl) +done + +lemma lem: + "!!L R. (p,q) : step R None ==> (False#p, False#q) : step (conc L R) None" +by(simp add: conc_def step_def) + +lemma lemma2b: + "(p,q) : (eps R)^* ==> (False#p, False#q) : (eps(conc L R))^*" +apply (induct rule: rtrancl_induct) + apply (blast) +apply (drule lem) +apply (blast intro: rtrancl_into_rtrancl) +done + +lemma True_False_eps_concI: + "!!L R. fin L p ==> (True#p, False#start R) : eps(conc L R)" +by(simp add: conc_def step_def) + +lemma True_epsclosure_conc[iff]: + "((True#p,q) : (eps(conc L R))^*) = + ((? r. (p,r) : (eps L)^* & q = True#r) | + (? r. (p,r) : (eps L)^* & fin L r & + (? s. (start R, s) : (eps R)^* & q = False#s)))" +apply (rule iffI) + apply (blast dest: lemma1a) +apply (erule disjE) + apply (blast intro: lemma2a) +apply (clarify) +apply (rule rtrancl_trans) +apply (erule lemma2a) +apply (rule converse_rtrancl_into_rtrancl) +apply (erule True_False_eps_concI) +apply (erule lemma2b) +done + +(** True in steps **) + +lemma True_steps_concD[rule_format]: + "!p. (True#p,q) : steps (conc L R) w --> + ((? r. (p,r) : steps L w & q = True#r) | + (? u v. w = u@v & (? r. (p,r) : steps L u & fin L r & + (? s. (start R,s) : steps R v & q = False#s))))" +apply (induct "w") + apply (simp) +apply (simp) +apply (clarify del: disjCI) + apply (erule disjE) + apply (clarify del: disjCI) + apply (erule disjE) + apply (clarify del: disjCI) + apply (erule allE, erule impE, assumption) + apply (erule disjE) + apply (blast) + apply (rule disjI2) + apply (clarify) + apply (simp) + apply (rule_tac x = "a#u" in exI) + apply (simp) + apply (blast) + apply (blast) +apply (rule disjI2) +apply (clarify) +apply (simp) +apply (rule_tac x = "[]" in exI) +apply (simp) +apply (blast) +done + +lemma True_steps_conc: + "(True#p,q) : steps (conc L R) w = + ((? r. (p,r) : steps L w & q = True#r) | + (? u v. w = u@v & (? r. (p,r) : steps L u & fin L r & + (? s. (start R,s) : steps R v & q = False#s))))" +by (blast dest: True_steps_concD + intro: True_True_steps_concI in_steps_epsclosure) + +(** starting from the start **) + +lemma start_conc: + "!!L R. start(conc L R) = True#start L" +by (simp add: conc_def) + +lemma final_conc: + "!!L R. fin(conc L R) p = (? s. p = False#s & fin R s)" +by (simp add:conc_def split: list.split) + +lemma accepts_conc: + "accepts (conc L R) w = (? u v. w = u@v & accepts L u & accepts R v)" +apply (simp add: accepts_def True_steps_conc final_conc start_conc) +apply (blast) +done + +(******************************************************) +(* star *) +(******************************************************) + +lemma True_in_eps_star[iff]: + "!!A. (True#p,q) : eps(star A) = + ( (? r. q = True#r & (p,r) : eps A) | (fin A p & q = True#start A) )" +by (simp add:star_def step_def) (blast) + +lemma True_True_step_starI: + "!!A. (p,q) : step A a ==> (True#p, True#q) : step (star A) a" +by (simp add:star_def step_def) + +lemma True_True_eps_starI: + "(p,r) : (eps A)^* ==> (True#p, True#r) : (eps(star A))^*" +apply (induct rule: rtrancl_induct) + apply (blast) +apply (blast intro: True_True_step_starI rtrancl_into_rtrancl) +done + +lemma True_start_eps_starI: + "!!A. fin A p ==> (True#p,True#start A) : eps(star A)" +by (simp add:star_def step_def) + +lemma lem: + "(tp,s) : (eps(star A))^* ==> (! p. tp = True#p --> + (? r. ((p,r) : (eps A)^* | + (? q. (p,q) : (eps A)^* & fin A q & (start A,r) : (eps A)^*)) & + s = True#r))" +apply (induct rule: rtrancl_induct) + apply (simp) +apply (clarify) +apply (simp) +apply (blast intro: rtrancl_into_rtrancl) +done + +lemma True_eps_star[iff]: + "((True#p,s) : (eps(star A))^*) = + (? r. ((p,r) : (eps A)^* | + (? q. (p,q) : (eps A)^* & fin A q & (start A,r) : (eps A)^*)) & + s = True#r)" +apply (rule iffI) + apply (drule lem) + apply (blast) +(* Why can't blast do the rest? *) +apply (clarify) +apply (erule disjE) +apply (erule True_True_eps_starI) +apply (clarify) +apply (rule rtrancl_trans) +apply (erule True_True_eps_starI) +apply (rule rtrancl_trans) +apply (rule r_into_rtrancl) +apply (erule True_start_eps_starI) +apply (erule True_True_eps_starI) +done + +(** True in step Some **) + +lemma True_step_star[iff]: + "!!A. (True#p,r): step (star A) (Some a) = + (? q. (p,q): step A (Some a) & r=True#q)" +by (simp add:star_def step_def) (blast) + + +(** True in steps **) + +(* reverse list induction! Complicates matters for conc? *) +lemma True_start_steps_starD[rule_format]: + "!rr. (True#start A,rr) : steps (star A) w --> + (? us v. w = concat us @ v & + (!u:set us. accepts A u) & + (? r. (start A,r) : steps A v & rr = True#r))" +apply (induct w rule: rev_induct) + apply (simp) + apply (clarify) + apply (rule_tac x = "[]" in exI) + apply (erule disjE) + apply (simp) + apply (clarify) + apply (simp) +apply (simp add: O_assoc epsclosure_steps) +apply (clarify) +apply (erule allE, erule impE, assumption) +apply (clarify) +apply (erule disjE) + apply (rule_tac x = "us" in exI) + apply (rule_tac x = "v@[x]" in exI) + apply (simp add: O_assoc epsclosure_steps) + apply (blast) +apply (clarify) +apply (rule_tac x = "us@[v@[x]]" in exI) +apply (rule_tac x = "[]" in exI) +apply (simp add: accepts_def) +apply (blast) +done + +lemma True_True_steps_starI: + "!!p. (p,q) : steps A w ==> (True#p,True#q) : steps (star A) w" +apply (induct "w") + apply (simp) +apply (simp) +apply (blast intro: True_True_eps_starI True_True_step_starI) +done + +lemma steps_star_cycle: + "(!u : set us. accepts A u) ==> + (True#start A,True#start A) : steps (star A) (concat us)" +apply (induct "us") + apply (simp add:accepts_def) +apply (simp add:accepts_def) +by(blast intro: True_True_steps_starI True_start_eps_starI in_epsclosure_steps) + +(* Better stated directly with start(star A)? Loop in star A back to start(star A)?*) +lemma True_start_steps_star: + "(True#start A,rr) : steps (star A) w = + (? us v. w = concat us @ v & + (!u:set us. accepts A u) & + (? r. (start A,r) : steps A v & rr = True#r))" +apply (rule iffI) + apply (erule True_start_steps_starD) +apply (clarify) +apply (blast intro: steps_star_cycle True_True_steps_starI) +done + +(** the start state **) + +lemma start_step_star[iff]: + "!!A. (start(star A),r) : step (star A) a = (a=None & r = True#start A)" +by (simp add:star_def step_def) + +lemmas epsclosure_start_step_star = + in_unfold_rtrancl2[where p = "start(star A)", standard] + +lemma start_steps_star: + "(start(star A),r) : steps (star A) w = + ((w=[] & r= start(star A)) | (True#start A,r) : steps (star A) w)" +apply (rule iffI) + apply (case_tac "w") + apply (simp add: epsclosure_start_step_star) + apply (simp) + apply (clarify) + apply (simp add: epsclosure_start_step_star) + apply (blast) +apply (erule disjE) + apply (simp) +apply (blast intro: in_steps_epsclosure) +done + +lemma fin_star_True[iff]: "!!A. fin (star A) (True#p) = fin A p" +by (simp add:star_def) + +lemma fin_star_start[iff]: "!!A. fin (star A) (start(star A))" +by (simp add:star_def) + +(* too complex! Simpler if loop back to start(star A)? *) +lemma accepts_star: + "accepts (star A) w = + (? us. (!u : set(us). accepts A u) & (w = concat us) )" +apply(unfold accepts_def) +apply (simp add: start_steps_star True_start_steps_star) +apply (rule iffI) + apply (clarify) + apply (erule disjE) + apply (clarify) + apply (simp) + apply (rule_tac x = "[]" in exI) + apply (simp) + apply (clarify) + apply (rule_tac x = "us@[v]" in exI) + apply (simp add: accepts_def) + apply (blast) +apply (clarify) +apply (rule_tac xs = "us" in rev_exhaust) + apply (simp) + apply (blast) +apply (clarify) +apply (simp add: accepts_def) +apply (blast) +done + + +(***** Correctness of r2n *****) + +lemma accepts_rexp2nae: + "!!w. accepts (rexp2nae r) w = (w : lang r)" +apply (induct "r") + apply (simp add: accepts_def) + apply (simp add: accepts_atom) + apply (simp add: accepts_or) + apply (simp add: accepts_conc RegSet.conc_def) +apply (simp add: accepts_star in_star) +done + end