# HG changeset patch # User wenzelm # Date 1346869177 -7200 # Node ID 3d7a695385f1e4bf908829e6a650aa794a7e691b # Parent 03bee3a6a1b7bcf9eb0c747b6708c48170b46e5d tuned proofs; diff -r 03bee3a6a1b7 -r 3d7a695385f1 src/HOL/Nominal/Examples/Crary.thy --- a/src/HOL/Nominal/Examples/Crary.thy Wed Sep 05 19:51:00 2012 +0200 +++ b/src/HOL/Nominal/Examples/Crary.thy Wed Sep 05 20:19:37 2012 +0200 @@ -225,7 +225,7 @@ assumes a: "x\\" shows "\ = Var x" using a -by (induct \ arbitrary: x, auto simp add:fresh_list_cons fresh_prod fresh_atm) +by (induct \ arbitrary: x) (auto simp add:fresh_list_cons fresh_prod fresh_atm) lemma psubst_subst_propagate: assumes "x\\" @@ -529,7 +529,7 @@ lemma alg_path_equiv_implies_valid: shows "\ \ s \ t : T \ valid \" and "\ \ s \ t : T \ valid \" -by (induct rule : alg_equiv_alg_path_equiv.inducts, auto) +by (induct rule : alg_equiv_alg_path_equiv.inducts) auto lemma algorithmic_symmetry: shows "\ \ s \ t : T \ \ \ t \ s : T" diff -r 03bee3a6a1b7 -r 3d7a695385f1 src/HOL/Nominal/Examples/Fsub.thy --- a/src/HOL/Nominal/Examples/Fsub.thy Wed Sep 05 19:51:00 2012 +0200 +++ b/src/HOL/Nominal/Examples/Fsub.thy Wed Sep 05 20:19:37 2012 +0200 @@ -140,12 +140,12 @@ lemma finite_vrs: shows "finite (tyvrs_of x)" and "finite (vrs_of x)" -by (nominal_induct rule:binding.strong_induct, auto) +by (nominal_induct rule:binding.strong_induct) auto lemma finite_doms: shows "finite (ty_dom \)" and "finite (trm_dom \)" -by (induct \, auto simp add: finite_vrs) +by (induct \) (auto simp add: finite_vrs) lemma ty_dom_supp: shows "(supp (ty_dom \)) = (ty_dom \)" @@ -155,13 +155,13 @@ lemma ty_dom_inclusion: assumes a: "(TVarB X T)\set \" shows "X\(ty_dom \)" -using a by (induct \, auto) +using a by (induct \) (auto) lemma ty_binding_existence: assumes "X \ (tyvrs_of a)" shows "\T.(TVarB X T=a)" using assms -by (nominal_induct a rule: binding.strong_induct, auto) +by (nominal_induct a rule: binding.strong_induct) (auto) lemma ty_dom_existence: assumes a: "X\(ty_dom \)" @@ -176,7 +176,7 @@ lemma doms_append: shows "ty_dom (\@\) = ((ty_dom \) \ (ty_dom \))" and "trm_dom (\@\) = ((trm_dom \) \ (trm_dom \))" - by (induct \, auto) + by (induct \) (auto) lemma ty_vrs_prm_simp: fixes pi::"vrs prm" @@ -1069,7 +1069,7 @@ lemma typing_ok: assumes "\ \ t : T" shows "\ \ ok" -using assms by (induct, auto) +using assms by (induct) (auto) nominal_inductive typing by (auto dest!: typing_ok intro: closed_in_fresh fresh_dom type_subst_fresh @@ -1208,7 +1208,7 @@ lemma ty_dom_cons: shows "ty_dom (\@[VarB X Q]@\) = ty_dom (\@\)" -by (induct \, auto) +by (induct \) (auto) lemma closed_in_cons: assumes "S closed_in (\ @ VarB X Q # \)" @@ -1251,7 +1251,7 @@ lemma ty_dom_vrs: shows "ty_dom (G @ [VarB x Q] @ D) = ty_dom (G @ D)" -by (induct G, auto) +by (induct G) (auto) lemma valid_cons': assumes "\ (\ @ VarB x Q # \) ok" diff -r 03bee3a6a1b7 -r 3d7a695385f1 src/HOL/Nominal/Examples/SOS.thy --- a/src/HOL/Nominal/Examples/SOS.thy Wed Sep 05 19:51:00 2012 +0200 +++ b/src/HOL/Nominal/Examples/SOS.thy Wed Sep 05 20:19:37 2012 +0200 @@ -321,7 +321,7 @@ proof (nominal_induct e e\<^isub>1 avoiding: e\<^isub>2 rule: big.strong_induct) case (b_Lam x e t\<^isub>2) have "Lam [x].e \ t\<^isub>2" by fact - thus "Lam [x].e = t\<^isub>2" by (cases, simp_all add: trm.inject) + thus "Lam [x].e = t\<^isub>2" by cases (simp_all add: trm.inject) next case (b_App x e\<^isub>1 e\<^isub>2 e' e\<^isub>1' e\<^isub>2' t\<^isub>2) have ih1: "\t. e\<^isub>1 \ t \ Lam [x].e\<^isub>1' = t" by fact