# HG changeset patch # User haftmann # Date 1541836640 0 # Node ID 3d954183b707305984051f0763ac82c110b63d50 # Parent 9bbd5497befdf46b18ac521a636b0464864f239a replaced some ancient ASCII syntax diff -r 9bbd5497befd -r 3d954183b707 src/HOL/BNF_Cardinal_Arithmetic.thy --- a/src/HOL/BNF_Cardinal_Arithmetic.thy Sat Nov 10 07:57:19 2018 +0000 +++ b/src/HOL/BNF_Cardinal_Arithmetic.thy Sat Nov 10 07:57:20 2018 +0000 @@ -688,7 +688,7 @@ by (simp add: cinfinite_def cardSuc_Card_order cardSuc_finite) lemma cardSuc_UNION_Cinfinite: - assumes "Cinfinite r" "relChain (cardSuc r) As" "B \ (UN i : Field (cardSuc r). As i)" "|B| <=o r" + assumes "Cinfinite r" "relChain (cardSuc r) As" "B \ (\i \ Field (cardSuc r). As i)" "|B| <=o r" shows "\i \ Field (cardSuc r). B \ As i" using cardSuc_UNION assms unfolding cinfinite_def by blast diff -r 9bbd5497befd -r 3d954183b707 src/HOL/BNF_Cardinal_Order_Relation.thy --- a/src/HOL/BNF_Cardinal_Order_Relation.thy Sat Nov 10 07:57:19 2018 +0000 +++ b/src/HOL/BNF_Cardinal_Order_Relation.thy Sat Nov 10 07:57:20 2018 +0000 @@ -1519,7 +1519,7 @@ lemma regularCard_UNION: assumes r: "Card_order r" "regularCard r" and As: "relChain r As" -and Bsub: "B \ (UN i : Field r. As i)" +and Bsub: "B \ (\i \ Field r. As i)" and cardB: "|B| i \ Field r. B \ As i" proof- @@ -1568,7 +1568,7 @@ using r' by (simp add: card_of_Field_ordIso[of ?r']) finally have "|K| \o ?r'" . moreover - {let ?L = "UN j : K. underS ?r' j" + {let ?L = "\ j \ K. underS ?r' j" let ?J = "Field r" have rJ: "r =o |?J|" using r_card card_of_Field_ordIso ordIso_symmetric by blast @@ -1606,7 +1606,7 @@ lemma cardSuc_UNION: assumes r: "Card_order r" and "\finite (Field r)" and As: "relChain (cardSuc r) As" -and Bsub: "B \ (UN i : Field (cardSuc r). As i)" +and Bsub: "B \ (\ i \ Field (cardSuc r). As i)" and cardB: "|B| <=o r" shows "\i \ Field (cardSuc r). B \ As i" proof- diff -r 9bbd5497befd -r 3d954183b707 src/HOL/Lattices_Big.thy --- a/src/HOL/Lattices_Big.thy Sat Nov 10 07:57:19 2018 +0000 +++ b/src/HOL/Lattices_Big.thy Sat Nov 10 07:57:20 2018 +0000 @@ -370,7 +370,7 @@ by (rule finite_surj [where f = "sup x", OF B(1)], auto) have finAB: "finite {sup a b |a b. a \ A \ b \ B}" proof - - have "{sup a b |a b. a \ A \ b \ B} = (UN a:A. UN b:B. {sup a b})" + have "{sup a b |a b. a \ A \ b \ B} = (\a\A. \b\B. {sup a b})" by blast thus ?thesis by(simp add: insert(1) B(1)) qed @@ -407,7 +407,7 @@ by(rule finite_surj[where f = "%b. inf x b", OF B(1)], auto) have finAB: "finite {inf a b |a b. a \ A \ b \ B}" proof - - have "{inf a b |a b. a \ A \ b \ B} = (UN a:A. UN b:B. {inf a b})" + have "{inf a b |a b. a \ A \ b \ B} = (\a\A. \b\B. {inf a b})" by blast thus ?thesis by(simp add: insert(1) B(1)) qed diff -r 9bbd5497befd -r 3d954183b707 src/HOL/List.thy --- a/src/HOL/List.thy Sat Nov 10 07:57:19 2018 +0000 +++ b/src/HOL/List.thy Sat Nov 10 07:57:20 2018 +0000 @@ -1633,7 +1633,7 @@ lemma Nil_eq_concat_conv [simp]: "([] = concat xss) = (\xs \ set xss. xs = [])" by (induct xss) auto -lemma set_concat [simp]: "set (concat xs) = (UN x:set xs. set x)" +lemma set_concat [simp]: "set (concat xs) = (\x\set xs. set x)" by (induct xs) auto lemma concat_map_singleton[simp]: "concat(map (%x. [f x]) xs) = map f xs" diff -r 9bbd5497befd -r 3d954183b707 src/HOL/Set_Interval.thy --- a/src/HOL/Set_Interval.thy Sat Nov 10 07:57:19 2018 +0000 +++ b/src/HOL/Set_Interval.thy Sat Nov 10 07:57:20 2018 +0000 @@ -696,7 +696,7 @@ lemma atMost_Suc_eq_insert_0: "{.. Suc n} = insert 0 (Suc ` {.. n})" unfolding lessThan_Suc_atMost[symmetric] lessThan_Suc_eq_insert_0[of "Suc n"] .. -lemma UN_lessThan_UNIV: "(UN m::nat. lessThan m) = UNIV" +lemma UN_lessThan_UNIV: "(\m::nat. lessThan m) = UNIV" by blast subsubsection \The Constant @{term greaterThan}\ @@ -709,7 +709,7 @@ unfolding greaterThan_def by (auto elim: linorder_neqE) -lemma INT_greaterThan_UNIV: "(INT m::nat. greaterThan m) = {}" +lemma INT_greaterThan_UNIV: "(\m::nat. greaterThan m) = {}" by blast subsubsection \The Constant @{term atLeast}\ @@ -723,7 +723,7 @@ lemma atLeast_Suc_greaterThan: "atLeast (Suc k) = greaterThan k" by (auto simp add: greaterThan_def atLeast_def less_Suc_eq_le) -lemma UN_atLeast_UNIV: "(UN m::nat. atLeast m) = UNIV" +lemma UN_atLeast_UNIV: "(\m::nat. atLeast m) = UNIV" by blast subsubsection \The Constant @{term atMost}\ @@ -734,7 +734,7 @@ lemma atMost_Suc: "atMost (Suc k) = insert (Suc k) (atMost k)" unfolding atMost_def by (auto simp add: less_Suc_eq order_le_less) -lemma UN_atMost_UNIV: "(UN m::nat. atMost m) = UNIV" +lemma UN_atMost_UNIV: "(\m::nat. atMost m) = UNIV" by blast subsubsection \The Constant @{term atLeastLessThan}\ diff -r 9bbd5497befd -r 3d954183b707 src/HOL/Transitive_Closure.thy --- a/src/HOL/Transitive_Closure.thy Sat Nov 10 07:57:19 2018 +0000 +++ b/src/HOL/Transitive_Closure.thy Sat Nov 10 07:57:20 2018 +0000 @@ -1064,7 +1064,7 @@ lemma relpow_finite_bounded: fixes R :: "('a \ 'a) set" assumes "finite R" - shows "R^^k \ (UN n:{n. n \ card R}. R^^n)" + shows "R^^k \ (\n\{n. n \ card R}. R^^n)" apply (cases k, force) apply (use relpow_finite_bounded1[OF assms, of k] in auto) done