# HG changeset patch # User wenzelm # Date 963523404 -7200 # Node ID 3da45f19730e4c54f04364290261dac014304f6b # Parent 6861e3b00155f86a8dcda24621dca9fbde13a7f5 updated; diff -r 6861e3b00155 -r 3da45f19730e doc-src/AxClass/generated/Group.tex --- a/doc-src/AxClass/generated/Group.tex Thu Jul 13 23:22:26 2000 +0200 +++ b/doc-src/AxClass/generated/Group.tex Thu Jul 13 23:23:24 2000 +0200 @@ -214,7 +214,7 @@ exclusive-or as operation $\TIMES$, identity as $\isasyminv$, and $False$ as $1$ forms an Abelian group.% \end{isamarkuptext}% -\isacommand{defs}\isanewline +\isacommand{defs}~(\isakeyword{overloaded})\isanewline ~~times\_bool\_def:~~~{"}x~{\isasymOtimes}~y~{\isasymequiv}~x~{\isasymnoteq}~(y{\isasymColon}bool){"}\isanewline ~~inverse\_bool\_def:~{"}x{\isasyminv}~{\isasymequiv}~x{\isasymColon}bool{"}\isanewline ~~unit\_bool\_def:~~~~{"}{\isasymunit}~{\isasymequiv}~False{"}% @@ -269,7 +269,7 @@ products, direct sums or function spaces. Subsequently we lift $\TIMES$ component-wise to binary products $\alpha \times \beta$.% \end{isamarkuptext}% -\isacommand{defs}\isanewline +\isacommand{defs}~(\isakeyword{overloaded})\isanewline ~~times\_prod\_def:~{"}p~{\isasymOtimes}~q~{\isasymequiv}~(fst~p~{\isasymOtimes}~fst~q,~snd~p~{\isasymOtimes}~snd~q){"}% \begin{isamarkuptext}% It is very easy to see that associativity of $\TIMES^\alpha$ and diff -r 6861e3b00155 -r 3da45f19730e doc-src/AxClass/generated/Product.tex --- a/doc-src/AxClass/generated/Product.tex Thu Jul 13 23:22:26 2000 +0200 +++ b/doc-src/AxClass/generated/Product.tex Thu Jul 13 23:23:24 2000 +0200 @@ -50,7 +50,7 @@ \end{isamarkuptext}% \isacommand{instance}~bool~::~product\isanewline ~~\isacommand{by}~intro\_classes\isanewline -\isacommand{defs}\isanewline +\isacommand{defs}~(\isakeyword{overloaded})\isanewline ~~product\_bool\_def:~{"}x~{\isasymOtimes}~y~{\isasymequiv}~x~{\isasymand}~y{"}% \begin{isamarkuptext}% The definition $prod_bool_def$ becomes syntactically well-formed only