# HG changeset patch # User nipkow # Date 1242733932 -7200 # Node ID 3dde56615750825b2ab64aad024ec8c1417ba418 # Parent 5b7b9ba5868d46e3ab5841320d1410b6fd8ab933 new lemma diff -r 5b7b9ba5868d -r 3dde56615750 src/HOL/List.thy --- a/src/HOL/List.thy Mon May 18 23:43:36 2009 +0100 +++ b/src/HOL/List.thy Tue May 19 13:52:12 2009 +0200 @@ -2913,6 +2913,10 @@ "sorted (xs@ys) = (sorted xs & sorted ys & (\x \ set xs. \y \ set ys. x\y))" by (induct xs) (auto simp add:sorted_Cons) +lemma sorted_nth_mono: + "sorted xs \ i <= j \ j < length xs \ xs!i <= xs!j" +by (induct xs arbitrary: i j) (auto simp:nth_Cons' sorted_Cons) + lemma set_insort: "set(insort x xs) = insert x (set xs)" by (induct xs) auto