# HG changeset patch # User paulson # Date 963486358 -7200 # Node ID 3dfae8f90dcf2398e9d099a8cf0ff61b69aa62f9 # Parent 342cbcb9c0d859f356b89804cfbadcd2a32958bd removed now-redundant proof steps diff -r 342cbcb9c0d8 -r 3dfae8f90dcf src/ZF/AC/AC10_AC15.ML --- a/src/ZF/AC/AC10_AC15.ML Thu Jul 13 13:04:48 2000 +0200 +++ b/src/ZF/AC/AC10_AC15.ML Thu Jul 13 13:05:58 2000 +0200 @@ -187,10 +187,9 @@ by (mp_tac 1); by (etac exE 1); by (res_inst_tac [("x","lam x:A. {f`x}")] exI 1); -by (asm_full_simp_tac (simpset() addsimps - [singleton_eqpoll_1 RS eqpoll_imp_lepoll, - singletonI RS not_emptyI]) 1); -by (fast_tac (claset() addSEs [apply_type]) 1); +by (asm_simp_tac (simpset() addsimps + [singleton_eqpoll_1 RS eqpoll_imp_lepoll, + singletonI RS not_emptyI]) 1); qed "AC1_AC13"; (* ********************************************************************** *) @@ -235,13 +234,12 @@ qed "lemma_aux"; Goal "ALL B:A. f(B)~=0 & f(B)<=B & f(B) lepoll 1 \ -\ ==> (lam x:A. THE y. f(x)={y}) : (PROD X:A. X)"; +\ ==> (lam x:A. THE y. f(x)={y}) : (PROD X:A. X)"; by (rtac lam_type 1); by (dtac bspec 1 THEN (assume_tac 1)); by (REPEAT (etac conjE 1)); by (eresolve_tac [lemma_aux RS exE] 1 THEN (assume_tac 1)); by (asm_full_simp_tac (simpset() addsimps [the_element]) 1); -by (fast_tac (claset() addEs [ssubst]) 1); val lemma = result(); Goalw AC_defs "AC13(1) ==> AC1"; diff -r 342cbcb9c0d8 -r 3dfae8f90dcf src/ZF/AC/AC1_WO2.ML --- a/src/ZF/AC/AC1_WO2.ML Thu Jul 13 13:04:48 2000 +0200 +++ b/src/ZF/AC/AC1_WO2.ML Thu Jul 13 13:05:58 2000 +0200 @@ -5,8 +5,6 @@ The proof of AC1 ==> WO2 *) -open AC1_WO2; - (*Establishing the existence of a bijection -- hence the need for uresult*) val [prem] = goal thy "f : (PROD X:Pow(x) - {0}. X) ==> \ \ ?g(f) : bij(x, LEAST i. HH(lam X:Pow(x)-{0}. {f`X}, x, i) = {x})";