# HG changeset patch # User nipkow # Date 1347931491 -7200 # Node ID 3f4104ccca776f9070aeea0acec1aa82ccfe9356 # Parent bf491a1c15c2dc559e6dfaad9bd58217b8535ab8 beautified names diff -r bf491a1c15c2 -r 3f4104ccca77 src/HOL/IMP/Abs_Int1.thy --- a/src/HOL/IMP/Abs_Int1.thy Tue Sep 18 01:55:13 2012 +0200 +++ b/src/HOL/IMP/Abs_Int1.thy Tue Sep 18 03:24:51 2012 +0200 @@ -233,7 +233,8 @@ assumes h: "m x \ h" begin -definition "m_st S = (\ x \ dom S. m(fun S x))" +definition m_st :: "'av st \ nat" ("m\<^isub>s\<^isub>t") where +"m_st S = (\ x \ dom S. m(fun S x))" lemma m_st_h: "x \ L X \ finite X \ m_st x \ h * card X" by(simp add: L_st_def m_st_def) @@ -258,7 +259,7 @@ qed -definition m_o :: "nat \ 'av st option \ nat" where +definition m_o :: "nat \ 'av st option \ nat" ("m\<^isub>o") where "m_o d opt = (case opt of None \ h*d+1 | Some S \ m_st S)" lemma m_o_h: "ost \ L X \ finite X \ m_o (card X) ost \ (h*card X + 1)" @@ -287,7 +288,7 @@ qed -definition m_c :: "'av st option acom \ nat" where +definition m_c :: "'av st option acom \ nat" ("m\<^isub>c") where "m_c C = (\i L(vars(strip C))"