# HG changeset patch # User paulson # Date 1596646200 -3600 # Node ID 6a2f439013507cf9c6ee4aa6348b8aa0dc5ac0a1 # Parent 43a43b182a81f06f274c59b1157ffaeef20722e4# Parent 3f8e6c0166ac0d644640f76f6b9e3fa3b55e8be8 merged diff -r 3f8e6c0166ac -r 6a2f43901350 NEWS --- a/NEWS Tue Aug 04 11:45:03 2020 +0100 +++ b/NEWS Wed Aug 05 17:50:00 2020 +0100 @@ -83,6 +83,13 @@ * Session HOL-Word: Compound operation "bin_split" simplifies by default into its components "drop_bit" and "take_bit". INCOMPATIBILITY. +* Session HOL-Word: Uniform polymorphic "mask" operation for both +types int and word. INCOMPATIBILITY + +* Session HOL-Word: Operations lsb, msb and set_bit are separated +into theories Misc_lsb, Misc_msb and Misc_set_bit respectively. +INCOMPATIBILITY. + * Session HOL-Word: Operations "bin_last", "bin_rest", "bin_nth", "bintrunc", "sbintrunc", "norm_sint", "bin_cat" and "max_word" are now mere input abbreviations. Minor INCOMPATIBILITY. @@ -90,10 +97,6 @@ * Session HOL-Word: Theory HOL-Library.Z2 is not imported any longer. Minor INCOMPATIBILITY. -* Session HOL-Word: Operations lsb, msb and set_bit are separated -into theories Misc_lsb, Misc_msb and Misc_set_bit respectively. -INCOMPATIBILITY. - * Session HOL-TPTP: The "tptp_isabelle" and "tptp_sledgehammer" commands are in working order again, as opposed to outputting "GaveUp" on nearly all problems. diff -r 3f8e6c0166ac -r 6a2f43901350 src/HOL/Library/Bit_Operations.thy --- a/src/HOL/Library/Bit_Operations.thy Tue Aug 04 11:45:03 2020 +0100 +++ b/src/HOL/Library/Bit_Operations.thy Wed Aug 05 17:50:00 2020 +0100 @@ -15,9 +15,11 @@ fixes "and" :: \'a \ 'a \ 'a\ (infixr \AND\ 64) and or :: \'a \ 'a \ 'a\ (infixr \OR\ 59) and xor :: \'a \ 'a \ 'a\ (infixr \XOR\ 59) + and mask :: \nat \ 'a\ assumes bit_and_iff: \\n. bit (a AND b) n \ bit a n \ bit b n\ and bit_or_iff: \\n. bit (a OR b) n \ bit a n \ bit b n\ and bit_xor_iff: \\n. bit (a XOR b) n \ bit a n \ bit b n\ + and mask_eq_exp_minus_1: \mask n = 2 ^ n - 1\ begin text \ @@ -93,9 +95,6 @@ \take_bit n (a XOR b) = take_bit n a XOR take_bit n b\ by (auto simp add: bit_eq_iff bit_take_bit_iff bit_xor_iff) -definition mask :: \nat \ 'a\ - where mask_eq_exp_minus_1: \mask n = 2 ^ n - 1\ - lemma bit_mask_iff: \bit (mask m) n \ 2 ^ n \ 0 \ n < m\ by (simp add: mask_eq_exp_minus_1 bit_mask_iff) @@ -104,25 +103,33 @@ \even (mask n) \ n = 0\ using bit_mask_iff [of n 0] by auto -lemma mask_0 [simp, code]: +lemma mask_0 [simp]: \mask 0 = 0\ by (simp add: mask_eq_exp_minus_1) -lemma mask_Suc_exp [code]: +lemma mask_Suc_0 [simp]: + \mask (Suc 0) = 1\ + by (simp add: mask_eq_exp_minus_1 add_implies_diff sym) + +lemma mask_Suc_exp: \mask (Suc n) = 2 ^ n OR mask n\ by (rule bit_eqI) (auto simp add: bit_or_iff bit_mask_iff bit_exp_iff not_less le_less_Suc_eq) lemma mask_Suc_double: - \mask (Suc n) = 2 * mask n OR 1\ + \mask (Suc n) = 1 OR 2 * mask n\ proof (rule bit_eqI) fix q assume \2 ^ q \ 0\ - show \bit (mask (Suc n)) q \ bit (2 * mask n OR 1) q\ + show \bit (mask (Suc n)) q \ bit (1 OR 2 * mask n) q\ by (cases q) (simp_all add: even_mask_iff even_or_iff bit_or_iff bit_mask_iff bit_exp_iff bit_double_iff not_less le_less_Suc_eq bit_1_iff, auto simp add: mult_2) qed +lemma mask_numeral: + \mask (numeral n) = 1 + 2 * mask (pred_numeral n)\ + by (simp add: numeral_eq_Suc mask_Suc_double one_or_eq ac_simps) + lemma take_bit_eq_mask: \take_bit n a = a AND mask n\ by (rule bit_eqI) @@ -495,6 +502,9 @@ \bit (k XOR l) n \ bit k n \ bit l n\ for k l :: int by (auto simp add: xor_int_def bit_or_int_iff bit_and_int_iff bit_not_int_iff) +definition mask_int :: \nat \ int\ + where \mask n = (2 :: int) ^ n - 1\ + instance proof fix k l :: int and n :: nat show \- k = NOT (k - 1)\ @@ -505,7 +515,7 @@ by (fact bit_or_int_iff) show \bit (k XOR l) n \ bit k n \ bit l n\ by (fact bit_xor_int_iff) -qed (simp_all add: bit_not_int_iff) +qed (simp_all add: bit_not_int_iff mask_int_def) end @@ -948,17 +958,18 @@ lemma signed_take_bit_code [code]: \signed_take_bit n k = - (let l = k AND mask (Suc n) + (let l = take_bit (Suc n) k in if bit l n then l - (push_bit n 2) else l)\ proof - - have *: \(k AND mask (Suc n)) - 2 * 2 ^ n = k AND mask (Suc n) OR NOT (mask (Suc n))\ + have *: \(take_bit (Suc n) k) - 2 * 2 ^ n = take_bit (Suc n) k OR NOT (mask (Suc n))\ apply (subst disjunctive_add [symmetric]) - apply (simp_all add: bit_and_iff bit_mask_iff bit_not_iff) + apply (simp_all add: bit_and_iff bit_mask_iff bit_not_iff bit_take_bit_iff) apply (simp flip: minus_exp_eq_not_mask) done show ?thesis by (rule bit_eqI) - (auto simp add: Let_def bit_and_iff bit_signed_take_bit_iff push_bit_eq_mult min_def not_le bit_mask_iff bit_exp_iff less_Suc_eq * bit_or_iff bit_not_iff) + (auto simp add: Let_def bit_and_iff bit_signed_take_bit_iff push_bit_eq_mult min_def not_le + bit_mask_iff bit_exp_iff less_Suc_eq * bit_or_iff bit_take_bit_iff bit_not_iff) qed @@ -976,6 +987,9 @@ definition xor_nat :: \nat \ nat \ nat\ where \m XOR n = nat (int m XOR int n)\ for m n :: nat +definition mask_nat :: \nat \ nat\ + where \mask n = (2 :: nat) ^ n - 1\ + instance proof fix m n q :: nat show \bit (m AND n) q \ bit m q \ bit n q\ @@ -984,7 +998,7 @@ by (auto simp add: or_nat_def bit_or_iff less_le bit_eq_iff) show \bit (m XOR n) q \ bit m q \ bit n q\ by (auto simp add: xor_nat_def bit_xor_iff less_le bit_eq_iff) -qed +qed (simp add: mask_nat_def) end @@ -1044,22 +1058,19 @@ lift_definition xor_integer :: \integer \ integer \ integer\ is xor . -instance proof - fix k l :: \integer\ and n :: nat - show \- k = NOT (k - 1)\ - by transfer (simp add: minus_eq_not_minus_1) - show \bit (NOT k) n \ (2 :: integer) ^ n \ 0 \ \ bit k n\ - by transfer (fact bit_not_iff) - show \bit (k AND l) n \ bit k n \ bit l n\ - by transfer (fact bit_and_iff) - show \bit (k OR l) n \ bit k n \ bit l n\ - by transfer (fact bit_or_iff) - show \bit (k XOR l) n \ bit k n \ bit l n\ - by transfer (fact bit_xor_iff) -qed +lift_definition mask_integer :: \nat \ integer\ + is mask . + +instance by (standard; transfer) + (simp_all add: minus_eq_not_minus_1 mask_eq_exp_minus_1 + bit_not_iff bit_and_iff bit_or_iff bit_xor_iff) end +lemma [code]: + \mask n = 2 ^ n - (1::integer)\ + by (simp add: mask_eq_exp_minus_1) + instantiation natural :: semiring_bit_operations begin @@ -1072,18 +1083,18 @@ lift_definition xor_natural :: \natural \ natural \ natural\ is xor . -instance proof - fix m n :: \natural\ and q :: nat - show \bit (m AND n) q \ bit m q \ bit n q\ - by transfer (fact bit_and_iff) - show \bit (m OR n) q \ bit m q \ bit n q\ - by transfer (fact bit_or_iff) - show \bit (m XOR n) q \ bit m q \ bit n q\ - by transfer (fact bit_xor_iff) -qed +lift_definition mask_natural :: \nat \ natural\ + is mask . + +instance by (standard; transfer) + (simp_all add: mask_eq_exp_minus_1 bit_and_iff bit_or_iff bit_xor_iff) end +lemma [code]: + \integer_of_natural (mask n) = mask n\ + by transfer (simp add: mask_eq_exp_minus_1 of_nat_diff) + lifting_update integer.lifting lifting_forget integer.lifting diff -r 3f8e6c0166ac -r 6a2f43901350 src/HOL/Library/Z2.thy --- a/src/HOL/Library/Z2.thy Tue Aug 04 11:45:03 2020 +0100 +++ b/src/HOL/Library/Z2.thy Wed Aug 05 17:50:00 2020 +0100 @@ -187,6 +187,9 @@ definition xor_bit :: \bit \ bit \ bit\ where [simp]: \b XOR c = of_bool (odd b \ odd c)\ for b c :: bit +definition mask_bit :: \nat \ bit\ + where [simp]: \mask_bit n = of_bool (n > 0)\ + instance by standard auto diff -r 3f8e6c0166ac -r 6a2f43901350 src/HOL/Word/Bit_Comprehension.thy --- a/src/HOL/Word/Bit_Comprehension.thy Tue Aug 04 11:45:03 2020 +0100 +++ b/src/HOL/Word/Bit_Comprehension.thy Wed Aug 05 17:50:00 2020 +0100 @@ -32,6 +32,6 @@ by (simp add: set_bits_int_def) lemma int_set_bits_K_True [simp]: "(BITS _. True) = (-1 :: int)" - by (auto simp add: set_bits_int_def bl_to_bin_def) + by (auto simp add: set_bits_int_def) -end \ No newline at end of file +end diff -r 3f8e6c0166ac -r 6a2f43901350 src/HOL/Word/Bit_Lists.thy --- a/src/HOL/Word/Bit_Lists.thy Tue Aug 04 11:45:03 2020 +0100 +++ b/src/HOL/Word/Bit_Lists.thy Wed Aug 05 17:50:00 2020 +0100 @@ -125,15 +125,6 @@ lemma bl_of_nth_nth [simp]: "bl_of_nth (length xs) ((!) (rev xs)) = xs" by (simp add: bl_of_nth_nth_le) -lemma takefill_bintrunc: "takefill False n bl = rev (bin_to_bl n (bl_to_bin (rev bl)))" - apply (rule nth_equalityI) - apply simp - apply (clarsimp simp: nth_takefill rev_nth nth_bin_to_bl bin_nth_of_bl) - done - -lemma bl_bin_bl_rtf: "bin_to_bl n (bl_to_bin bl) = rev (takefill False n (rev bl))" - by (simp add: takefill_bintrunc) - subsection \More\ @@ -296,4 +287,671 @@ rotate n (map2 f xs ys) = map2 f (rotate n xs) (rotate n ys)" by (induct n) (auto intro!: lth) + +subsection \Explicit bit representation of \<^typ>\int\\ + +primrec bl_to_bin_aux :: "bool list \ int \ int" + where + Nil: "bl_to_bin_aux [] w = w" + | Cons: "bl_to_bin_aux (b # bs) w = bl_to_bin_aux bs (of_bool b + 2 * w)" + +definition bl_to_bin :: "bool list \ int" + where "bl_to_bin bs = bl_to_bin_aux bs 0" + +primrec bin_to_bl_aux :: "nat \ int \ bool list \ bool list" + where + Z: "bin_to_bl_aux 0 w bl = bl" + | Suc: "bin_to_bl_aux (Suc n) w bl = bin_to_bl_aux n (bin_rest w) ((bin_last w) # bl)" + +definition bin_to_bl :: "nat \ int \ bool list" + where "bin_to_bl n w = bin_to_bl_aux n w []" + +lemma bin_to_bl_aux_zero_minus_simp [simp]: + "0 < n \ bin_to_bl_aux n 0 bl = bin_to_bl_aux (n - 1) 0 (False # bl)" + by (cases n) auto + +lemma bin_to_bl_aux_minus1_minus_simp [simp]: + "0 < n \ bin_to_bl_aux n (- 1) bl = bin_to_bl_aux (n - 1) (- 1) (True # bl)" + by (cases n) auto + +lemma bin_to_bl_aux_one_minus_simp [simp]: + "0 < n \ bin_to_bl_aux n 1 bl = bin_to_bl_aux (n - 1) 0 (True # bl)" + by (cases n) auto + +lemma bin_to_bl_aux_Bit0_minus_simp [simp]: + "0 < n \ + bin_to_bl_aux n (numeral (Num.Bit0 w)) bl = bin_to_bl_aux (n - 1) (numeral w) (False # bl)" + by (cases n) simp_all + +lemma bin_to_bl_aux_Bit1_minus_simp [simp]: + "0 < n \ + bin_to_bl_aux n (numeral (Num.Bit1 w)) bl = bin_to_bl_aux (n - 1) (numeral w) (True # bl)" + by (cases n) simp_all + +lemma bl_to_bin_aux_append: "bl_to_bin_aux (bs @ cs) w = bl_to_bin_aux cs (bl_to_bin_aux bs w)" + by (induct bs arbitrary: w) auto + +lemma bin_to_bl_aux_append: "bin_to_bl_aux n w bs @ cs = bin_to_bl_aux n w (bs @ cs)" + by (induct n arbitrary: w bs) auto + +lemma bl_to_bin_append: "bl_to_bin (bs @ cs) = bl_to_bin_aux cs (bl_to_bin bs)" + unfolding bl_to_bin_def by (rule bl_to_bin_aux_append) + +lemma bin_to_bl_aux_alt: "bin_to_bl_aux n w bs = bin_to_bl n w @ bs" + by (simp add: bin_to_bl_def bin_to_bl_aux_append) + +lemma bin_to_bl_0 [simp]: "bin_to_bl 0 bs = []" + by (auto simp: bin_to_bl_def) + +lemma size_bin_to_bl_aux: "length (bin_to_bl_aux n w bs) = n + length bs" + by (induct n arbitrary: w bs) auto + +lemma size_bin_to_bl [simp]: "length (bin_to_bl n w) = n" + by (simp add: bin_to_bl_def size_bin_to_bl_aux) + +lemma bl_bin_bl': "bin_to_bl (n + length bs) (bl_to_bin_aux bs w) = bin_to_bl_aux n w bs" + apply (induct bs arbitrary: w n) + apply auto + apply (simp_all only: add_Suc [symmetric]) + apply (auto simp add: bin_to_bl_def) + done + +lemma bl_bin_bl [simp]: "bin_to_bl (length bs) (bl_to_bin bs) = bs" + unfolding bl_to_bin_def + apply (rule box_equals) + apply (rule bl_bin_bl') + prefer 2 + apply (rule bin_to_bl_aux.Z) + apply simp + done + +lemma bl_to_bin_inj: "bl_to_bin bs = bl_to_bin cs \ length bs = length cs \ bs = cs" + apply (rule_tac box_equals) + defer + apply (rule bl_bin_bl) + apply (rule bl_bin_bl) + apply simp + done + +lemma bl_to_bin_False [simp]: "bl_to_bin (False # bl) = bl_to_bin bl" + by (auto simp: bl_to_bin_def) + +lemma bl_to_bin_Nil [simp]: "bl_to_bin [] = 0" + by (auto simp: bl_to_bin_def) + +lemma bin_to_bl_zero_aux: "bin_to_bl_aux n 0 bl = replicate n False @ bl" + by (induct n arbitrary: bl) (auto simp: replicate_app_Cons_same) + +lemma bin_to_bl_zero: "bin_to_bl n 0 = replicate n False" + by (simp add: bin_to_bl_def bin_to_bl_zero_aux) + +lemma bin_to_bl_minus1_aux: "bin_to_bl_aux n (- 1) bl = replicate n True @ bl" + by (induct n arbitrary: bl) (auto simp: replicate_app_Cons_same) + +lemma bin_to_bl_minus1: "bin_to_bl n (- 1) = replicate n True" + by (simp add: bin_to_bl_def bin_to_bl_minus1_aux) + + +subsection \Semantic interpretation of \<^typ>\bool list\ as \<^typ>\int\\ + +lemma bin_bl_bin': "bl_to_bin (bin_to_bl_aux n w bs) = bl_to_bin_aux bs (bintrunc n w)" + by (induct n arbitrary: w bs) (auto simp: bl_to_bin_def take_bit_Suc ac_simps mod_2_eq_odd) + +lemma bin_bl_bin [simp]: "bl_to_bin (bin_to_bl n w) = bintrunc n w" + by (auto simp: bin_to_bl_def bin_bl_bin') + +lemma bl_to_bin_rep_F: "bl_to_bin (replicate n False @ bl) = bl_to_bin bl" + by (simp add: bin_to_bl_zero_aux [symmetric] bin_bl_bin') (simp add: bl_to_bin_def) + +lemma bin_to_bl_trunc [simp]: "n \ m \ bin_to_bl n (bintrunc m w) = bin_to_bl n w" + by (auto intro: bl_to_bin_inj) + +lemma bin_to_bl_aux_bintr: + "bin_to_bl_aux n (bintrunc m bin) bl = + replicate (n - m) False @ bin_to_bl_aux (min n m) bin bl" + apply (induct n arbitrary: m bin bl) + apply clarsimp + apply clarsimp + apply (case_tac "m") + apply (clarsimp simp: bin_to_bl_zero_aux) + apply (erule thin_rl) + apply (induct_tac n) + apply (auto simp add: take_bit_Suc) + done + +lemma bin_to_bl_bintr: + "bin_to_bl n (bintrunc m bin) = replicate (n - m) False @ bin_to_bl (min n m) bin" + unfolding bin_to_bl_def by (rule bin_to_bl_aux_bintr) + +lemma bl_to_bin_rep_False: "bl_to_bin (replicate n False) = 0" + by (induct n) auto + +lemma len_bin_to_bl_aux: "length (bin_to_bl_aux n w bs) = n + length bs" + by (fact size_bin_to_bl_aux) + +lemma len_bin_to_bl: "length (bin_to_bl n w) = n" + by (fact size_bin_to_bl) (* FIXME: duplicate *) + +lemma sign_bl_bin': "bin_sign (bl_to_bin_aux bs w) = bin_sign w" + by (induction bs arbitrary: w) (simp_all add: bin_sign_def) + +lemma sign_bl_bin: "bin_sign (bl_to_bin bs) = 0" + by (simp add: bl_to_bin_def sign_bl_bin') + +lemma bl_sbin_sign_aux: "hd (bin_to_bl_aux (Suc n) w bs) = (bin_sign (sbintrunc n w) = -1)" + by (induction n arbitrary: w bs) (auto simp add: bin_sign_def even_iff_mod_2_eq_zero bit_Suc) + +lemma bl_sbin_sign: "hd (bin_to_bl (Suc n) w) = (bin_sign (sbintrunc n w) = -1)" + unfolding bin_to_bl_def by (rule bl_sbin_sign_aux) + +lemma bin_nth_of_bl_aux: + "bin_nth (bl_to_bin_aux bl w) n = + (n < size bl \ rev bl ! n \ n \ length bl \ bin_nth w (n - size bl))" + apply (induction bl arbitrary: w) + apply simp_all + apply safe + apply (simp_all add: not_le nth_append bit_double_iff even_bit_succ_iff split: if_splits) + done + +lemma bin_nth_of_bl: "bin_nth (bl_to_bin bl) n = (n < length bl \ rev bl ! n)" + by (simp add: bl_to_bin_def bin_nth_of_bl_aux) + +lemma bin_nth_bl: "n < m \ bin_nth w n = nth (rev (bin_to_bl m w)) n" + apply (induct n arbitrary: m w) + apply clarsimp + apply (case_tac m, clarsimp) + apply (clarsimp simp: bin_to_bl_def) + apply (simp add: bin_to_bl_aux_alt) + apply (case_tac m, clarsimp) + apply (clarsimp simp: bin_to_bl_def) + apply (simp add: bin_to_bl_aux_alt bit_Suc) + done + +lemma nth_bin_to_bl_aux: + "n < m + length bl \ (bin_to_bl_aux m w bl) ! n = + (if n < m then bit w (m - 1 - n) else bl ! (n - m))" + apply (induction bl arbitrary: w) + apply simp_all + apply (simp add: bin_nth_bl [of \m - Suc n\ m] rev_nth flip: bin_to_bl_def) + apply (metis One_nat_def Suc_pred add_diff_cancel_left' + add_diff_cancel_right' bin_to_bl_aux_alt bin_to_bl_def + diff_Suc_Suc diff_is_0_eq diff_zero less_Suc_eq_0_disj + less_antisym less_imp_Suc_add list.size(3) nat_less_le nth_append size_bin_to_bl_aux) + done + +lemma nth_bin_to_bl: "n < m \ (bin_to_bl m w) ! n = bin_nth w (m - Suc n)" + by (simp add: bin_to_bl_def nth_bin_to_bl_aux) + +lemma takefill_bintrunc: "takefill False n bl = rev (bin_to_bl n (bl_to_bin (rev bl)))" + apply (rule nth_equalityI) + apply simp + apply (clarsimp simp: nth_takefill rev_nth nth_bin_to_bl bin_nth_of_bl) + done + +lemma bl_bin_bl_rtf: "bin_to_bl n (bl_to_bin bl) = rev (takefill False n (rev bl))" + by (simp add: takefill_bintrunc) + +lemma bl_to_bin_lt2p_aux: "bl_to_bin_aux bs w < (w + 1) * (2 ^ length bs)" +proof (induction bs arbitrary: w) + case Nil + then show ?case + by simp +next + case (Cons b bs) + from Cons.IH [of \1 + 2 * w\] Cons.IH [of \2 * w\] + show ?case + apply (auto simp add: algebra_simps) + apply (subst mult_2 [of \2 ^ length bs\]) + apply (simp only: add.assoc) + apply (rule pos_add_strict) + apply simp_all + done +qed + +lemma bl_to_bin_lt2p_drop: "bl_to_bin bs < 2 ^ length (dropWhile Not bs)" +proof (induct bs) + case Nil + then show ?case by simp +next + case (Cons b bs) + with bl_to_bin_lt2p_aux[where w=1] show ?case + by (simp add: bl_to_bin_def) +qed + +lemma bl_to_bin_lt2p: "bl_to_bin bs < 2 ^ length bs" + by (metis bin_bl_bin bintr_lt2p bl_bin_bl) + +lemma bl_to_bin_ge2p_aux: "bl_to_bin_aux bs w \ w * (2 ^ length bs)" +proof (induction bs arbitrary: w) + case Nil + then show ?case + by simp +next + case (Cons b bs) + from Cons.IH [of \1 + 2 * w\] Cons.IH [of \2 * w\] + show ?case + apply (auto simp add: algebra_simps) + apply (rule add_le_imp_le_left [of \2 ^ length bs\]) + apply (rule add_increasing) + apply simp_all + done +qed + +lemma bl_to_bin_ge0: "bl_to_bin bs \ 0" + apply (unfold bl_to_bin_def) + apply (rule xtrans(4)) + apply (rule bl_to_bin_ge2p_aux) + apply simp + done + +lemma butlast_rest_bin: "butlast (bin_to_bl n w) = bin_to_bl (n - 1) (bin_rest w)" + apply (unfold bin_to_bl_def) + apply (cases n, clarsimp) + apply clarsimp + apply (auto simp add: bin_to_bl_aux_alt) + done + +lemma butlast_bin_rest: "butlast bl = bin_to_bl (length bl - Suc 0) (bin_rest (bl_to_bin bl))" + using butlast_rest_bin [where w="bl_to_bin bl" and n="length bl"] by simp + +lemma butlast_rest_bl2bin_aux: + "bl \ [] \ bl_to_bin_aux (butlast bl) w = bin_rest (bl_to_bin_aux bl w)" + by (induct bl arbitrary: w) auto + +lemma butlast_rest_bl2bin: "bl_to_bin (butlast bl) = bin_rest (bl_to_bin bl)" + by (cases bl) (auto simp: bl_to_bin_def butlast_rest_bl2bin_aux) + +lemma trunc_bl2bin_aux: + "bintrunc m (bl_to_bin_aux bl w) = + bl_to_bin_aux (drop (length bl - m) bl) (bintrunc (m - length bl) w)" +proof (induct bl arbitrary: w) + case Nil + show ?case by simp +next + case (Cons b bl) + show ?case + proof (cases "m - length bl") + case 0 + then have "Suc (length bl) - m = Suc (length bl - m)" by simp + with Cons show ?thesis by simp + next + case (Suc n) + then have "m - Suc (length bl) = n" by simp + with Cons Suc show ?thesis by (simp add: take_bit_Suc ac_simps) + qed +qed + +lemma trunc_bl2bin: "bintrunc m (bl_to_bin bl) = bl_to_bin (drop (length bl - m) bl)" + by (simp add: bl_to_bin_def trunc_bl2bin_aux) + +lemma trunc_bl2bin_len [simp]: "bintrunc (length bl) (bl_to_bin bl) = bl_to_bin bl" + by (simp add: trunc_bl2bin) + +lemma bl2bin_drop: "bl_to_bin (drop k bl) = bintrunc (length bl - k) (bl_to_bin bl)" + apply (rule trans) + prefer 2 + apply (rule trunc_bl2bin [symmetric]) + apply (cases "k \ length bl") + apply auto + done + +lemma take_rest_power_bin: "m \ n \ take m (bin_to_bl n w) = bin_to_bl m ((bin_rest ^^ (n - m)) w)" + apply (rule nth_equalityI) + apply simp + apply (clarsimp simp add: nth_bin_to_bl nth_rest_power_bin) + done + +lemma last_bin_last': "size xs > 0 \ last xs \ bin_last (bl_to_bin_aux xs w)" + by (induct xs arbitrary: w) auto + +lemma last_bin_last: "size xs > 0 \ last xs \ bin_last (bl_to_bin xs)" + unfolding bl_to_bin_def by (erule last_bin_last') + +lemma bin_last_last: "bin_last w \ last (bin_to_bl (Suc n) w)" + by (simp add: bin_to_bl_def) (auto simp: bin_to_bl_aux_alt) + +lemma drop_bin2bl_aux: + "drop m (bin_to_bl_aux n bin bs) = + bin_to_bl_aux (n - m) bin (drop (m - n) bs)" + apply (induction n arbitrary: m bin bs) + apply auto + apply (case_tac "m \ n") + apply (auto simp add: not_le Suc_diff_le) + apply (case_tac "m - n") + apply auto + apply (use Suc_diff_Suc in fastforce) + done + +lemma drop_bin2bl: "drop m (bin_to_bl n bin) = bin_to_bl (n - m) bin" + by (simp add: bin_to_bl_def drop_bin2bl_aux) + +lemma take_bin2bl_lem1: "take m (bin_to_bl_aux m w bs) = bin_to_bl m w" + apply (induct m arbitrary: w bs) + apply clarsimp + apply clarsimp + apply (simp add: bin_to_bl_aux_alt) + apply (simp add: bin_to_bl_def) + apply (simp add: bin_to_bl_aux_alt) + done + +lemma take_bin2bl_lem: "take m (bin_to_bl_aux (m + n) w bs) = take m (bin_to_bl (m + n) w)" + by (induct n arbitrary: w bs) (simp_all (no_asm) add: bin_to_bl_def take_bin2bl_lem1, simp) + +lemma bin_split_take: "bin_split n c = (a, b) \ bin_to_bl m a = take m (bin_to_bl (m + n) c)" + apply (induct n arbitrary: b c) + apply clarsimp + apply (clarsimp simp: Let_def split: prod.split_asm) + apply (simp add: bin_to_bl_def) + apply (simp add: take_bin2bl_lem drop_bit_Suc) + done + +lemma bin_to_bl_drop_bit: + "k = m + n \ bin_to_bl m (drop_bit n c) = take m (bin_to_bl k c)" + using bin_split_take by simp + +lemma bin_split_take1: + "k = m + n \ bin_split n c = (a, b) \ bin_to_bl m a = take m (bin_to_bl k c)" + using bin_split_take by simp + +lemma bl_bin_bl_rep_drop: + "bin_to_bl n (bl_to_bin bl) = + replicate (n - length bl) False @ drop (length bl - n) bl" + by (simp add: bl_to_bin_inj bl_to_bin_rep_F trunc_bl2bin) + +lemma bl_to_bin_aux_cat: + "bl_to_bin_aux bs (bin_cat w nv v) = + bin_cat w (nv + length bs) (bl_to_bin_aux bs v)" + by (rule bit_eqI) + (auto simp add: bin_nth_of_bl_aux bin_nth_cat algebra_simps) + +lemma bin_to_bl_aux_cat: + "bin_to_bl_aux (nv + nw) (bin_cat v nw w) bs = + bin_to_bl_aux nv v (bin_to_bl_aux nw w bs)" + by (induction nw arbitrary: w bs) (simp_all add: concat_bit_Suc) + +lemma bl_to_bin_aux_alt: "bl_to_bin_aux bs w = bin_cat w (length bs) (bl_to_bin bs)" + using bl_to_bin_aux_cat [where nv = "0" and v = "0"] + by (simp add: bl_to_bin_def [symmetric]) + +lemma bin_to_bl_cat: + "bin_to_bl (nv + nw) (bin_cat v nw w) = + bin_to_bl_aux nv v (bin_to_bl nw w)" + by (simp add: bin_to_bl_def bin_to_bl_aux_cat) + +lemmas bl_to_bin_aux_app_cat = + trans [OF bl_to_bin_aux_append bl_to_bin_aux_alt] + +lemmas bin_to_bl_aux_cat_app = + trans [OF bin_to_bl_aux_cat bin_to_bl_aux_alt] + +lemma bl_to_bin_app_cat: + "bl_to_bin (bsa @ bs) = bin_cat (bl_to_bin bsa) (length bs) (bl_to_bin bs)" + by (simp only: bl_to_bin_aux_app_cat bl_to_bin_def) + +lemma bin_to_bl_cat_app: + "bin_to_bl (n + nw) (bin_cat w nw wa) = bin_to_bl n w @ bin_to_bl nw wa" + by (simp only: bin_to_bl_def bin_to_bl_aux_cat_app) + +text \\bl_to_bin_app_cat_alt\ and \bl_to_bin_app_cat\ are easily interderivable.\ +lemma bl_to_bin_app_cat_alt: "bin_cat (bl_to_bin cs) n w = bl_to_bin (cs @ bin_to_bl n w)" + by (simp add: bl_to_bin_app_cat) + +lemma mask_lem: "(bl_to_bin (True # replicate n False)) = bl_to_bin (replicate n True) + 1" + apply (unfold bl_to_bin_def) + apply (induct n) + apply simp + apply (simp only: Suc_eq_plus1 replicate_add append_Cons [symmetric] bl_to_bin_aux_append) + apply simp + done + +lemma bin_exhaust: + "(\x b. bin = of_bool b + 2 * x \ Q) \ Q" for bin :: int + apply (cases \even bin\) + apply (auto elim!: evenE oddE) + apply fastforce + apply fastforce + done + +primrec rbl_succ :: "bool list \ bool list" + where + Nil: "rbl_succ Nil = Nil" + | Cons: "rbl_succ (x # xs) = (if x then False # rbl_succ xs else True # xs)" + +primrec rbl_pred :: "bool list \ bool list" + where + Nil: "rbl_pred Nil = Nil" + | Cons: "rbl_pred (x # xs) = (if x then False # xs else True # rbl_pred xs)" + +primrec rbl_add :: "bool list \ bool list \ bool list" + where \ \result is length of first arg, second arg may be longer\ + Nil: "rbl_add Nil x = Nil" + | Cons: "rbl_add (y # ys) x = + (let ws = rbl_add ys (tl x) + in (y \ hd x) # (if hd x \ y then rbl_succ ws else ws))" + +primrec rbl_mult :: "bool list \ bool list \ bool list" + where \ \result is length of first arg, second arg may be longer\ + Nil: "rbl_mult Nil x = Nil" + | Cons: "rbl_mult (y # ys) x = + (let ws = False # rbl_mult ys x + in if y then rbl_add ws x else ws)" + +lemma size_rbl_pred: "length (rbl_pred bl) = length bl" + by (induct bl) auto + +lemma size_rbl_succ: "length (rbl_succ bl) = length bl" + by (induct bl) auto + +lemma size_rbl_add: "length (rbl_add bl cl) = length bl" + by (induct bl arbitrary: cl) (auto simp: Let_def size_rbl_succ) + +lemma size_rbl_mult: "length (rbl_mult bl cl) = length bl" + by (induct bl arbitrary: cl) (auto simp add: Let_def size_rbl_add) + +lemmas rbl_sizes [simp] = + size_rbl_pred size_rbl_succ size_rbl_add size_rbl_mult + +lemmas rbl_Nils = + rbl_pred.Nil rbl_succ.Nil rbl_add.Nil rbl_mult.Nil + +lemma rbl_add_app2: "length blb \ length bla \ rbl_add bla (blb @ blc) = rbl_add bla blb" + apply (induct bla arbitrary: blb) + apply simp + apply clarsimp + apply (case_tac blb, clarsimp) + apply (clarsimp simp: Let_def) + done + +lemma rbl_add_take2: + "length blb \ length bla \ rbl_add bla (take (length bla) blb) = rbl_add bla blb" + apply (induct bla arbitrary: blb) + apply simp + apply clarsimp + apply (case_tac blb, clarsimp) + apply (clarsimp simp: Let_def) + done + +lemma rbl_mult_app2: "length blb \ length bla \ rbl_mult bla (blb @ blc) = rbl_mult bla blb" + apply (induct bla arbitrary: blb) + apply simp + apply clarsimp + apply (case_tac blb, clarsimp) + apply (clarsimp simp: Let_def rbl_add_app2) + done + +lemma rbl_mult_take2: + "length blb \ length bla \ rbl_mult bla (take (length bla) blb) = rbl_mult bla blb" + apply (rule trans) + apply (rule rbl_mult_app2 [symmetric]) + apply simp + apply (rule_tac f = "rbl_mult bla" in arg_cong) + apply (rule append_take_drop_id) + done + +lemma rbl_add_split: + "P (rbl_add (y # ys) (x # xs)) = + (\ws. length ws = length ys \ ws = rbl_add ys xs \ + (y \ ((x \ P (False # rbl_succ ws)) \ (\ x \ P (True # ws)))) \ + (\ y \ P (x # ws)))" + by (cases y) (auto simp: Let_def) + +lemma rbl_mult_split: + "P (rbl_mult (y # ys) xs) = + (\ws. length ws = Suc (length ys) \ ws = False # rbl_mult ys xs \ + (y \ P (rbl_add ws xs)) \ (\ y \ P ws))" + by (auto simp: Let_def) + +lemma rbl_pred: "rbl_pred (rev (bin_to_bl n bin)) = rev (bin_to_bl n (bin - 1))" +proof (unfold bin_to_bl_def, induction n arbitrary: bin) + case 0 + then show ?case + by simp +next + case (Suc n) + obtain b k where \bin = of_bool b + 2 * k\ + using bin_exhaust by blast + moreover have \(2 * k - 1) div 2 = k - 1\ + using even_succ_div_2 [of \2 * (k - 1)\] + by simp + ultimately show ?case + using Suc [of \bin div 2\] + by simp (simp add: bin_to_bl_aux_alt) +qed + +lemma rbl_succ: "rbl_succ (rev (bin_to_bl n bin)) = rev (bin_to_bl n (bin + 1))" + apply (unfold bin_to_bl_def) + apply (induction n arbitrary: bin) + apply simp_all + apply (case_tac bin rule: bin_exhaust) + apply simp + apply (simp add: bin_to_bl_aux_alt ac_simps) + done + +lemma rbl_add: + "\bina binb. rbl_add (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb)) = + rev (bin_to_bl n (bina + binb))" + apply (unfold bin_to_bl_def) + apply (induct n) + apply simp + apply clarsimp + apply (case_tac bina rule: bin_exhaust) + apply (case_tac binb rule: bin_exhaust) + apply (case_tac b) + apply (case_tac [!] "ba") + apply (auto simp: rbl_succ bin_to_bl_aux_alt Let_def ac_simps) + done + +lemma rbl_add_long: + "m \ n \ rbl_add (rev (bin_to_bl n bina)) (rev (bin_to_bl m binb)) = + rev (bin_to_bl n (bina + binb))" + apply (rule box_equals [OF _ rbl_add_take2 rbl_add]) + apply (rule_tac f = "rbl_add (rev (bin_to_bl n bina))" in arg_cong) + apply (rule rev_swap [THEN iffD1]) + apply (simp add: rev_take drop_bin2bl) + apply simp + done + +lemma rbl_mult_gt1: + "m \ length bl \ + rbl_mult bl (rev (bin_to_bl m binb)) = + rbl_mult bl (rev (bin_to_bl (length bl) binb))" + apply (rule trans) + apply (rule rbl_mult_take2 [symmetric]) + apply simp_all + apply (rule_tac f = "rbl_mult bl" in arg_cong) + apply (rule rev_swap [THEN iffD1]) + apply (simp add: rev_take drop_bin2bl) + done + +lemma rbl_mult_gt: + "m > n \ + rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl m binb)) = + rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb))" + by (auto intro: trans [OF rbl_mult_gt1]) + +lemmas rbl_mult_Suc = lessI [THEN rbl_mult_gt] + +lemma rbbl_Cons: "b # rev (bin_to_bl n x) = rev (bin_to_bl (Suc n) (of_bool b + 2 * x))" + by (simp add: bin_to_bl_def) (simp add: bin_to_bl_aux_alt) + +lemma rbl_mult: + "rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb)) = + rev (bin_to_bl n (bina * binb))" + apply (induct n arbitrary: bina binb) + apply simp_all + apply (unfold bin_to_bl_def) + apply clarsimp + apply (case_tac bina rule: bin_exhaust) + apply (case_tac binb rule: bin_exhaust) + apply simp + apply (simp add: bin_to_bl_aux_alt) + apply (simp add: rbbl_Cons rbl_mult_Suc rbl_add algebra_simps) + done + +lemma sclem: "size (concat (map (bin_to_bl n) xs)) = length xs * n" + by (induct xs) auto + +lemma bin_cat_foldl_lem: + "foldl (\u. bin_cat u n) x xs = + bin_cat x (size xs * n) (foldl (\u. bin_cat u n) y xs)" + apply (induct xs arbitrary: x) + apply simp + apply (simp (no_asm)) + apply (frule asm_rl) + apply (drule meta_spec) + apply (erule trans) + apply (drule_tac x = "bin_cat y n a" in meta_spec) + apply (simp add: bin_cat_assoc_sym min.absorb2) + done + +lemma bin_rcat_bl: "bin_rcat n wl = bl_to_bin (concat (map (bin_to_bl n) wl))" + apply (unfold bin_rcat_def) + apply (rule sym) + apply (induct wl) + apply (auto simp add: bl_to_bin_append) + apply (simp add: bl_to_bin_aux_alt sclem) + apply (simp add: bin_cat_foldl_lem [symmetric]) + done + +lemma bin_last_bl_to_bin: "bin_last (bl_to_bin bs) \ bs \ [] \ last bs" +by(cases "bs = []")(auto simp add: bl_to_bin_def last_bin_last'[where w=0]) + +lemma bin_rest_bl_to_bin: "bin_rest (bl_to_bin bs) = bl_to_bin (butlast bs)" +by(cases "bs = []")(simp_all add: bl_to_bin_def butlast_rest_bl2bin_aux) + +lemma bl_xor_aux_bin: + "map2 (\x y. x \ y) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = + bin_to_bl_aux n (v XOR w) (map2 (\x y. x \ y) bs cs)" + apply (induction n arbitrary: v w bs cs) + apply auto + apply (case_tac v rule: bin_exhaust) + apply (case_tac w rule: bin_exhaust) + apply clarsimp + done + +lemma bl_or_aux_bin: + "map2 (\) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = + bin_to_bl_aux n (v OR w) (map2 (\) bs cs)" + by (induct n arbitrary: v w bs cs) simp_all + +lemma bl_and_aux_bin: + "map2 (\) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = + bin_to_bl_aux n (v AND w) (map2 (\) bs cs)" + by (induction n arbitrary: v w bs cs) simp_all + +lemma bl_not_aux_bin: "map Not (bin_to_bl_aux n w cs) = bin_to_bl_aux n (NOT w) (map Not cs)" + by (induct n arbitrary: w cs) auto + +lemma bl_not_bin: "map Not (bin_to_bl n w) = bin_to_bl n (NOT w)" + by (simp add: bin_to_bl_def bl_not_aux_bin) + +lemma bl_and_bin: "map2 (\) (bin_to_bl n v) (bin_to_bl n w) = bin_to_bl n (v AND w)" + by (simp add: bin_to_bl_def bl_and_aux_bin) + +lemma bl_or_bin: "map2 (\) (bin_to_bl n v) (bin_to_bl n w) = bin_to_bl n (v OR w)" + by (simp add: bin_to_bl_def bl_or_aux_bin) + +lemma bl_xor_bin: "map2 (\) (bin_to_bl n v) (bin_to_bl n w) = bin_to_bl n (v XOR w)" + using bl_xor_aux_bin by (simp add: bin_to_bl_def) + end diff -r 3f8e6c0166ac -r 6a2f43901350 src/HOL/Word/Bits_Int.thy --- a/src/HOL/Word/Bits_Int.thy Tue Aug 04 11:45:03 2020 +0100 +++ b/src/HOL/Word/Bits_Int.thy Wed Aug 05 17:50:00 2020 +0100 @@ -63,110 +63,6 @@ by auto -subsection \Explicit bit representation of \<^typ>\int\\ - -primrec bl_to_bin_aux :: "bool list \ int \ int" - where - Nil: "bl_to_bin_aux [] w = w" - | Cons: "bl_to_bin_aux (b # bs) w = bl_to_bin_aux bs (of_bool b + 2 * w)" - -definition bl_to_bin :: "bool list \ int" - where "bl_to_bin bs = bl_to_bin_aux bs 0" - -primrec bin_to_bl_aux :: "nat \ int \ bool list \ bool list" - where - Z: "bin_to_bl_aux 0 w bl = bl" - | Suc: "bin_to_bl_aux (Suc n) w bl = bin_to_bl_aux n (bin_rest w) ((bin_last w) # bl)" - -definition bin_to_bl :: "nat \ int \ bool list" - where "bin_to_bl n w = bin_to_bl_aux n w []" - -lemma bin_to_bl_aux_zero_minus_simp [simp]: - "0 < n \ bin_to_bl_aux n 0 bl = bin_to_bl_aux (n - 1) 0 (False # bl)" - by (cases n) auto - -lemma bin_to_bl_aux_minus1_minus_simp [simp]: - "0 < n \ bin_to_bl_aux n (- 1) bl = bin_to_bl_aux (n - 1) (- 1) (True # bl)" - by (cases n) auto - -lemma bin_to_bl_aux_one_minus_simp [simp]: - "0 < n \ bin_to_bl_aux n 1 bl = bin_to_bl_aux (n - 1) 0 (True # bl)" - by (cases n) auto - -lemma bin_to_bl_aux_Bit0_minus_simp [simp]: - "0 < n \ - bin_to_bl_aux n (numeral (Num.Bit0 w)) bl = bin_to_bl_aux (n - 1) (numeral w) (False # bl)" - by (cases n) simp_all - -lemma bin_to_bl_aux_Bit1_minus_simp [simp]: - "0 < n \ - bin_to_bl_aux n (numeral (Num.Bit1 w)) bl = bin_to_bl_aux (n - 1) (numeral w) (True # bl)" - by (cases n) simp_all - -lemma bl_to_bin_aux_append: "bl_to_bin_aux (bs @ cs) w = bl_to_bin_aux cs (bl_to_bin_aux bs w)" - by (induct bs arbitrary: w) auto - -lemma bin_to_bl_aux_append: "bin_to_bl_aux n w bs @ cs = bin_to_bl_aux n w (bs @ cs)" - by (induct n arbitrary: w bs) auto - -lemma bl_to_bin_append: "bl_to_bin (bs @ cs) = bl_to_bin_aux cs (bl_to_bin bs)" - unfolding bl_to_bin_def by (rule bl_to_bin_aux_append) - -lemma bin_to_bl_aux_alt: "bin_to_bl_aux n w bs = bin_to_bl n w @ bs" - by (simp add: bin_to_bl_def bin_to_bl_aux_append) - -lemma bin_to_bl_0 [simp]: "bin_to_bl 0 bs = []" - by (auto simp: bin_to_bl_def) - -lemma size_bin_to_bl_aux: "length (bin_to_bl_aux n w bs) = n + length bs" - by (induct n arbitrary: w bs) auto - -lemma size_bin_to_bl [simp]: "length (bin_to_bl n w) = n" - by (simp add: bin_to_bl_def size_bin_to_bl_aux) - -lemma bl_bin_bl': "bin_to_bl (n + length bs) (bl_to_bin_aux bs w) = bin_to_bl_aux n w bs" - apply (induct bs arbitrary: w n) - apply auto - apply (simp_all only: add_Suc [symmetric]) - apply (auto simp add: bin_to_bl_def) - done - -lemma bl_bin_bl [simp]: "bin_to_bl (length bs) (bl_to_bin bs) = bs" - unfolding bl_to_bin_def - apply (rule box_equals) - apply (rule bl_bin_bl') - prefer 2 - apply (rule bin_to_bl_aux.Z) - apply simp - done - -lemma bl_to_bin_inj: "bl_to_bin bs = bl_to_bin cs \ length bs = length cs \ bs = cs" - apply (rule_tac box_equals) - defer - apply (rule bl_bin_bl) - apply (rule bl_bin_bl) - apply simp - done - -lemma bl_to_bin_False [simp]: "bl_to_bin (False # bl) = bl_to_bin bl" - by (auto simp: bl_to_bin_def) - -lemma bl_to_bin_Nil [simp]: "bl_to_bin [] = 0" - by (auto simp: bl_to_bin_def) - -lemma bin_to_bl_zero_aux: "bin_to_bl_aux n 0 bl = replicate n False @ bl" - by (induct n arbitrary: bl) (auto simp: replicate_app_Cons_same) - -lemma bin_to_bl_zero: "bin_to_bl n 0 = replicate n False" - by (simp add: bin_to_bl_def bin_to_bl_zero_aux) - -lemma bin_to_bl_minus1_aux: "bin_to_bl_aux n (- 1) bl = replicate n True @ bl" - by (induct n arbitrary: bl) (auto simp: replicate_app_Cons_same) - -lemma bin_to_bl_minus1: "bin_to_bl n (- 1) = replicate n True" - by (simp add: bin_to_bl_def bin_to_bl_minus1_aux) - - subsection \Bit projection\ abbreviation (input) bin_nth :: \int \ nat \ bool\ @@ -1640,558 +1536,4 @@ "bin_sc n True i = i OR (1 << n)" by (induct n arbitrary: i) (rule bin_rl_eqI; simp)+ - -subsection \Semantic interpretation of \<^typ>\bool list\ as \<^typ>\int\\ - -lemma bin_bl_bin': "bl_to_bin (bin_to_bl_aux n w bs) = bl_to_bin_aux bs (bintrunc n w)" - by (induct n arbitrary: w bs) (auto simp: bl_to_bin_def take_bit_Suc ac_simps mod_2_eq_odd) - -lemma bin_bl_bin [simp]: "bl_to_bin (bin_to_bl n w) = bintrunc n w" - by (auto simp: bin_to_bl_def bin_bl_bin') - -lemma bl_to_bin_rep_F: "bl_to_bin (replicate n False @ bl) = bl_to_bin bl" - by (simp add: bin_to_bl_zero_aux [symmetric] bin_bl_bin') (simp add: bl_to_bin_def) - -lemma bin_to_bl_trunc [simp]: "n \ m \ bin_to_bl n (bintrunc m w) = bin_to_bl n w" - by (auto intro: bl_to_bin_inj) - -lemma bin_to_bl_aux_bintr: - "bin_to_bl_aux n (bintrunc m bin) bl = - replicate (n - m) False @ bin_to_bl_aux (min n m) bin bl" - apply (induct n arbitrary: m bin bl) - apply clarsimp - apply clarsimp - apply (case_tac "m") - apply (clarsimp simp: bin_to_bl_zero_aux) - apply (erule thin_rl) - apply (induct_tac n) - apply (auto simp add: take_bit_Suc) - done - -lemma bin_to_bl_bintr: - "bin_to_bl n (bintrunc m bin) = replicate (n - m) False @ bin_to_bl (min n m) bin" - unfolding bin_to_bl_def by (rule bin_to_bl_aux_bintr) - -lemma bl_to_bin_rep_False: "bl_to_bin (replicate n False) = 0" - by (induct n) auto - -lemma len_bin_to_bl_aux: "length (bin_to_bl_aux n w bs) = n + length bs" - by (fact size_bin_to_bl_aux) - -lemma len_bin_to_bl: "length (bin_to_bl n w) = n" - by (fact size_bin_to_bl) (* FIXME: duplicate *) - -lemma sign_bl_bin': "bin_sign (bl_to_bin_aux bs w) = bin_sign w" - by (induction bs arbitrary: w) (simp_all add: bin_sign_def) - -lemma sign_bl_bin: "bin_sign (bl_to_bin bs) = 0" - by (simp add: bl_to_bin_def sign_bl_bin') - -lemma bl_sbin_sign_aux: "hd (bin_to_bl_aux (Suc n) w bs) = (bin_sign (sbintrunc n w) = -1)" - by (induction n arbitrary: w bs) (auto simp add: bin_sign_def even_iff_mod_2_eq_zero bit_Suc) - -lemma bl_sbin_sign: "hd (bin_to_bl (Suc n) w) = (bin_sign (sbintrunc n w) = -1)" - unfolding bin_to_bl_def by (rule bl_sbin_sign_aux) - -lemma bin_nth_of_bl_aux: - "bin_nth (bl_to_bin_aux bl w) n = - (n < size bl \ rev bl ! n \ n \ length bl \ bin_nth w (n - size bl))" - apply (induction bl arbitrary: w) - apply simp_all - apply safe - apply (simp_all add: not_le nth_append bit_double_iff even_bit_succ_iff split: if_splits) - done - -lemma bin_nth_of_bl: "bin_nth (bl_to_bin bl) n = (n < length bl \ rev bl ! n)" - by (simp add: bl_to_bin_def bin_nth_of_bl_aux) - -lemma bin_nth_bl: "n < m \ bin_nth w n = nth (rev (bin_to_bl m w)) n" - apply (induct n arbitrary: m w) - apply clarsimp - apply (case_tac m, clarsimp) - apply (clarsimp simp: bin_to_bl_def) - apply (simp add: bin_to_bl_aux_alt) - apply (case_tac m, clarsimp) - apply (clarsimp simp: bin_to_bl_def) - apply (simp add: bin_to_bl_aux_alt bit_Suc) - done - -lemma nth_bin_to_bl_aux: - "n < m + length bl \ (bin_to_bl_aux m w bl) ! n = - (if n < m then bit w (m - 1 - n) else bl ! (n - m))" - apply (induction bl arbitrary: w) - apply simp_all - apply (simp add: bin_nth_bl [of \m - Suc n\ m] rev_nth flip: bin_to_bl_def) - apply (metis One_nat_def Suc_pred add_diff_cancel_left' - add_diff_cancel_right' bin_to_bl_aux_alt bin_to_bl_def - diff_Suc_Suc diff_is_0_eq diff_zero less_Suc_eq_0_disj - less_antisym less_imp_Suc_add list.size(3) nat_less_le nth_append size_bin_to_bl_aux) - done - -lemma nth_bin_to_bl: "n < m \ (bin_to_bl m w) ! n = bin_nth w (m - Suc n)" - by (simp add: bin_to_bl_def nth_bin_to_bl_aux) - -lemma bl_to_bin_lt2p_aux: "bl_to_bin_aux bs w < (w + 1) * (2 ^ length bs)" -proof (induction bs arbitrary: w) - case Nil - then show ?case - by simp -next - case (Cons b bs) - from Cons.IH [of \1 + 2 * w\] Cons.IH [of \2 * w\] - show ?case - apply (auto simp add: algebra_simps) - apply (subst mult_2 [of \2 ^ length bs\]) - apply (simp only: add.assoc) - apply (rule pos_add_strict) - apply simp_all - done -qed - -lemma bl_to_bin_lt2p_drop: "bl_to_bin bs < 2 ^ length (dropWhile Not bs)" -proof (induct bs) - case Nil - then show ?case by simp -next - case (Cons b bs) - with bl_to_bin_lt2p_aux[where w=1] show ?case - by (simp add: bl_to_bin_def) -qed - -lemma bl_to_bin_lt2p: "bl_to_bin bs < 2 ^ length bs" - by (metis bin_bl_bin bintr_lt2p bl_bin_bl) - -lemma bl_to_bin_ge2p_aux: "bl_to_bin_aux bs w \ w * (2 ^ length bs)" -proof (induction bs arbitrary: w) - case Nil - then show ?case - by simp -next - case (Cons b bs) - from Cons.IH [of \1 + 2 * w\] Cons.IH [of \2 * w\] - show ?case - apply (auto simp add: algebra_simps) - apply (rule add_le_imp_le_left [of \2 ^ length bs\]) - apply (rule add_increasing) - apply simp_all - done -qed - -lemma bl_to_bin_ge0: "bl_to_bin bs \ 0" - apply (unfold bl_to_bin_def) - apply (rule xtrans(4)) - apply (rule bl_to_bin_ge2p_aux) - apply simp - done - -lemma butlast_rest_bin: "butlast (bin_to_bl n w) = bin_to_bl (n - 1) (bin_rest w)" - apply (unfold bin_to_bl_def) - apply (cases n, clarsimp) - apply clarsimp - apply (auto simp add: bin_to_bl_aux_alt) - done - -lemma butlast_bin_rest: "butlast bl = bin_to_bl (length bl - Suc 0) (bin_rest (bl_to_bin bl))" - using butlast_rest_bin [where w="bl_to_bin bl" and n="length bl"] by simp - -lemma butlast_rest_bl2bin_aux: - "bl \ [] \ bl_to_bin_aux (butlast bl) w = bin_rest (bl_to_bin_aux bl w)" - by (induct bl arbitrary: w) auto - -lemma butlast_rest_bl2bin: "bl_to_bin (butlast bl) = bin_rest (bl_to_bin bl)" - by (cases bl) (auto simp: bl_to_bin_def butlast_rest_bl2bin_aux) - -lemma trunc_bl2bin_aux: - "bintrunc m (bl_to_bin_aux bl w) = - bl_to_bin_aux (drop (length bl - m) bl) (bintrunc (m - length bl) w)" -proof (induct bl arbitrary: w) - case Nil - show ?case by simp -next - case (Cons b bl) - show ?case - proof (cases "m - length bl") - case 0 - then have "Suc (length bl) - m = Suc (length bl - m)" by simp - with Cons show ?thesis by simp - next - case (Suc n) - then have "m - Suc (length bl) = n" by simp - with Cons Suc show ?thesis by (simp add: take_bit_Suc ac_simps) - qed -qed - -lemma trunc_bl2bin: "bintrunc m (bl_to_bin bl) = bl_to_bin (drop (length bl - m) bl)" - by (simp add: bl_to_bin_def trunc_bl2bin_aux) - -lemma trunc_bl2bin_len [simp]: "bintrunc (length bl) (bl_to_bin bl) = bl_to_bin bl" - by (simp add: trunc_bl2bin) - -lemma bl2bin_drop: "bl_to_bin (drop k bl) = bintrunc (length bl - k) (bl_to_bin bl)" - apply (rule trans) - prefer 2 - apply (rule trunc_bl2bin [symmetric]) - apply (cases "k \ length bl") - apply auto - done - -lemma take_rest_power_bin: "m \ n \ take m (bin_to_bl n w) = bin_to_bl m ((bin_rest ^^ (n - m)) w)" - apply (rule nth_equalityI) - apply simp - apply (clarsimp simp add: nth_bin_to_bl nth_rest_power_bin) - done - -lemma last_bin_last': "size xs > 0 \ last xs \ bin_last (bl_to_bin_aux xs w)" - by (induct xs arbitrary: w) auto - -lemma last_bin_last: "size xs > 0 \ last xs \ bin_last (bl_to_bin xs)" - unfolding bl_to_bin_def by (erule last_bin_last') - -lemma bin_last_last: "bin_last w \ last (bin_to_bl (Suc n) w)" - by (simp add: bin_to_bl_def) (auto simp: bin_to_bl_aux_alt) - -lemma drop_bin2bl_aux: - "drop m (bin_to_bl_aux n bin bs) = - bin_to_bl_aux (n - m) bin (drop (m - n) bs)" - apply (induction n arbitrary: m bin bs) - apply auto - apply (case_tac "m \ n") - apply (auto simp add: not_le Suc_diff_le) - apply (case_tac "m - n") - apply auto - apply (use Suc_diff_Suc in fastforce) - done - -lemma drop_bin2bl: "drop m (bin_to_bl n bin) = bin_to_bl (n - m) bin" - by (simp add: bin_to_bl_def drop_bin2bl_aux) - -lemma take_bin2bl_lem1: "take m (bin_to_bl_aux m w bs) = bin_to_bl m w" - apply (induct m arbitrary: w bs) - apply clarsimp - apply clarsimp - apply (simp add: bin_to_bl_aux_alt) - apply (simp add: bin_to_bl_def) - apply (simp add: bin_to_bl_aux_alt) - done - -lemma take_bin2bl_lem: "take m (bin_to_bl_aux (m + n) w bs) = take m (bin_to_bl (m + n) w)" - by (induct n arbitrary: w bs) (simp_all (no_asm) add: bin_to_bl_def take_bin2bl_lem1, simp) - -lemma bin_split_take: "bin_split n c = (a, b) \ bin_to_bl m a = take m (bin_to_bl (m + n) c)" - apply (induct n arbitrary: b c) - apply clarsimp - apply (clarsimp simp: Let_def split: prod.split_asm) - apply (simp add: bin_to_bl_def) - apply (simp add: take_bin2bl_lem drop_bit_Suc) - done - -lemma bin_to_bl_drop_bit: - "k = m + n \ bin_to_bl m (drop_bit n c) = take m (bin_to_bl k c)" - using bin_split_take by simp - -lemma bin_split_take1: - "k = m + n \ bin_split n c = (a, b) \ bin_to_bl m a = take m (bin_to_bl k c)" - using bin_split_take by simp - -lemma bl_bin_bl_rep_drop: - "bin_to_bl n (bl_to_bin bl) = - replicate (n - length bl) False @ drop (length bl - n) bl" - by (simp add: bl_to_bin_inj bl_to_bin_rep_F trunc_bl2bin) - -lemma bl_to_bin_aux_cat: - "bl_to_bin_aux bs (bin_cat w nv v) = - bin_cat w (nv + length bs) (bl_to_bin_aux bs v)" - by (rule bit_eqI) - (auto simp add: bin_nth_of_bl_aux bin_nth_cat algebra_simps) - -lemma bin_to_bl_aux_cat: - "bin_to_bl_aux (nv + nw) (bin_cat v nw w) bs = - bin_to_bl_aux nv v (bin_to_bl_aux nw w bs)" - by (induction nw arbitrary: w bs) (simp_all add: concat_bit_Suc) - -lemma bl_to_bin_aux_alt: "bl_to_bin_aux bs w = bin_cat w (length bs) (bl_to_bin bs)" - using bl_to_bin_aux_cat [where nv = "0" and v = "0"] - by (simp add: bl_to_bin_def [symmetric]) - -lemma bin_to_bl_cat: - "bin_to_bl (nv + nw) (bin_cat v nw w) = - bin_to_bl_aux nv v (bin_to_bl nw w)" - by (simp add: bin_to_bl_def bin_to_bl_aux_cat) - -lemmas bl_to_bin_aux_app_cat = - trans [OF bl_to_bin_aux_append bl_to_bin_aux_alt] - -lemmas bin_to_bl_aux_cat_app = - trans [OF bin_to_bl_aux_cat bin_to_bl_aux_alt] - -lemma bl_to_bin_app_cat: - "bl_to_bin (bsa @ bs) = bin_cat (bl_to_bin bsa) (length bs) (bl_to_bin bs)" - by (simp only: bl_to_bin_aux_app_cat bl_to_bin_def) - -lemma bin_to_bl_cat_app: - "bin_to_bl (n + nw) (bin_cat w nw wa) = bin_to_bl n w @ bin_to_bl nw wa" - by (simp only: bin_to_bl_def bin_to_bl_aux_cat_app) - -text \\bl_to_bin_app_cat_alt\ and \bl_to_bin_app_cat\ are easily interderivable.\ -lemma bl_to_bin_app_cat_alt: "bin_cat (bl_to_bin cs) n w = bl_to_bin (cs @ bin_to_bl n w)" - by (simp add: bl_to_bin_app_cat) - -lemma mask_lem: "(bl_to_bin (True # replicate n False)) = bl_to_bin (replicate n True) + 1" - apply (unfold bl_to_bin_def) - apply (induct n) - apply simp - apply (simp only: Suc_eq_plus1 replicate_add append_Cons [symmetric] bl_to_bin_aux_append) - apply simp - done - -lemma bin_exhaust: - "(\x b. bin = of_bool b + 2 * x \ Q) \ Q" for bin :: int - apply (cases \even bin\) - apply (auto elim!: evenE oddE) - apply fastforce - apply fastforce - done - -primrec rbl_succ :: "bool list \ bool list" - where - Nil: "rbl_succ Nil = Nil" - | Cons: "rbl_succ (x # xs) = (if x then False # rbl_succ xs else True # xs)" - -primrec rbl_pred :: "bool list \ bool list" - where - Nil: "rbl_pred Nil = Nil" - | Cons: "rbl_pred (x # xs) = (if x then False # xs else True # rbl_pred xs)" - -primrec rbl_add :: "bool list \ bool list \ bool list" - where \ \result is length of first arg, second arg may be longer\ - Nil: "rbl_add Nil x = Nil" - | Cons: "rbl_add (y # ys) x = - (let ws = rbl_add ys (tl x) - in (y \ hd x) # (if hd x \ y then rbl_succ ws else ws))" - -primrec rbl_mult :: "bool list \ bool list \ bool list" - where \ \result is length of first arg, second arg may be longer\ - Nil: "rbl_mult Nil x = Nil" - | Cons: "rbl_mult (y # ys) x = - (let ws = False # rbl_mult ys x - in if y then rbl_add ws x else ws)" - -lemma size_rbl_pred: "length (rbl_pred bl) = length bl" - by (induct bl) auto - -lemma size_rbl_succ: "length (rbl_succ bl) = length bl" - by (induct bl) auto - -lemma size_rbl_add: "length (rbl_add bl cl) = length bl" - by (induct bl arbitrary: cl) (auto simp: Let_def size_rbl_succ) - -lemma size_rbl_mult: "length (rbl_mult bl cl) = length bl" - by (induct bl arbitrary: cl) (auto simp add: Let_def size_rbl_add) - -lemmas rbl_sizes [simp] = - size_rbl_pred size_rbl_succ size_rbl_add size_rbl_mult - -lemmas rbl_Nils = - rbl_pred.Nil rbl_succ.Nil rbl_add.Nil rbl_mult.Nil - -lemma rbl_add_app2: "length blb \ length bla \ rbl_add bla (blb @ blc) = rbl_add bla blb" - apply (induct bla arbitrary: blb) - apply simp - apply clarsimp - apply (case_tac blb, clarsimp) - apply (clarsimp simp: Let_def) - done - -lemma rbl_add_take2: - "length blb \ length bla \ rbl_add bla (take (length bla) blb) = rbl_add bla blb" - apply (induct bla arbitrary: blb) - apply simp - apply clarsimp - apply (case_tac blb, clarsimp) - apply (clarsimp simp: Let_def) - done - -lemma rbl_mult_app2: "length blb \ length bla \ rbl_mult bla (blb @ blc) = rbl_mult bla blb" - apply (induct bla arbitrary: blb) - apply simp - apply clarsimp - apply (case_tac blb, clarsimp) - apply (clarsimp simp: Let_def rbl_add_app2) - done - -lemma rbl_mult_take2: - "length blb \ length bla \ rbl_mult bla (take (length bla) blb) = rbl_mult bla blb" - apply (rule trans) - apply (rule rbl_mult_app2 [symmetric]) - apply simp - apply (rule_tac f = "rbl_mult bla" in arg_cong) - apply (rule append_take_drop_id) - done - -lemma rbl_add_split: - "P (rbl_add (y # ys) (x # xs)) = - (\ws. length ws = length ys \ ws = rbl_add ys xs \ - (y \ ((x \ P (False # rbl_succ ws)) \ (\ x \ P (True # ws)))) \ - (\ y \ P (x # ws)))" - by (cases y) (auto simp: Let_def) - -lemma rbl_mult_split: - "P (rbl_mult (y # ys) xs) = - (\ws. length ws = Suc (length ys) \ ws = False # rbl_mult ys xs \ - (y \ P (rbl_add ws xs)) \ (\ y \ P ws))" - by (auto simp: Let_def) - -lemma rbl_pred: "rbl_pred (rev (bin_to_bl n bin)) = rev (bin_to_bl n (bin - 1))" -proof (unfold bin_to_bl_def, induction n arbitrary: bin) - case 0 - then show ?case - by simp -next - case (Suc n) - obtain b k where \bin = of_bool b + 2 * k\ - using bin_exhaust by blast - moreover have \(2 * k - 1) div 2 = k - 1\ - using even_succ_div_2 [of \2 * (k - 1)\] - by simp - ultimately show ?case - using Suc [of \bin div 2\] - by simp (simp add: bin_to_bl_aux_alt) -qed - -lemma rbl_succ: "rbl_succ (rev (bin_to_bl n bin)) = rev (bin_to_bl n (bin + 1))" - apply (unfold bin_to_bl_def) - apply (induction n arbitrary: bin) - apply simp_all - apply (case_tac bin rule: bin_exhaust) - apply simp - apply (simp add: bin_to_bl_aux_alt ac_simps) - done - -lemma rbl_add: - "\bina binb. rbl_add (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb)) = - rev (bin_to_bl n (bina + binb))" - apply (unfold bin_to_bl_def) - apply (induct n) - apply simp - apply clarsimp - apply (case_tac bina rule: bin_exhaust) - apply (case_tac binb rule: bin_exhaust) - apply (case_tac b) - apply (case_tac [!] "ba") - apply (auto simp: rbl_succ bin_to_bl_aux_alt Let_def ac_simps) - done - -lemma rbl_add_long: - "m \ n \ rbl_add (rev (bin_to_bl n bina)) (rev (bin_to_bl m binb)) = - rev (bin_to_bl n (bina + binb))" - apply (rule box_equals [OF _ rbl_add_take2 rbl_add]) - apply (rule_tac f = "rbl_add (rev (bin_to_bl n bina))" in arg_cong) - apply (rule rev_swap [THEN iffD1]) - apply (simp add: rev_take drop_bin2bl) - apply simp - done - -lemma rbl_mult_gt1: - "m \ length bl \ - rbl_mult bl (rev (bin_to_bl m binb)) = - rbl_mult bl (rev (bin_to_bl (length bl) binb))" - apply (rule trans) - apply (rule rbl_mult_take2 [symmetric]) - apply simp_all - apply (rule_tac f = "rbl_mult bl" in arg_cong) - apply (rule rev_swap [THEN iffD1]) - apply (simp add: rev_take drop_bin2bl) - done - -lemma rbl_mult_gt: - "m > n \ - rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl m binb)) = - rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb))" - by (auto intro: trans [OF rbl_mult_gt1]) - -lemmas rbl_mult_Suc = lessI [THEN rbl_mult_gt] - -lemma rbbl_Cons: "b # rev (bin_to_bl n x) = rev (bin_to_bl (Suc n) (of_bool b + 2 * x))" - by (simp add: bin_to_bl_def) (simp add: bin_to_bl_aux_alt) - -lemma rbl_mult: - "rbl_mult (rev (bin_to_bl n bina)) (rev (bin_to_bl n binb)) = - rev (bin_to_bl n (bina * binb))" - apply (induct n arbitrary: bina binb) - apply simp_all - apply (unfold bin_to_bl_def) - apply clarsimp - apply (case_tac bina rule: bin_exhaust) - apply (case_tac binb rule: bin_exhaust) - apply simp - apply (simp add: bin_to_bl_aux_alt) - apply (simp add: rbbl_Cons rbl_mult_Suc rbl_add algebra_simps) - done - -lemma sclem: "size (concat (map (bin_to_bl n) xs)) = length xs * n" - by (induct xs) auto - -lemma bin_cat_foldl_lem: - "foldl (\u. bin_cat u n) x xs = - bin_cat x (size xs * n) (foldl (\u. bin_cat u n) y xs)" - apply (induct xs arbitrary: x) - apply simp - apply (simp (no_asm)) - apply (frule asm_rl) - apply (drule meta_spec) - apply (erule trans) - apply (drule_tac x = "bin_cat y n a" in meta_spec) - apply (simp add: bin_cat_assoc_sym min.absorb2) - done - -lemma bin_rcat_bl: "bin_rcat n wl = bl_to_bin (concat (map (bin_to_bl n) wl))" - apply (unfold bin_rcat_def) - apply (rule sym) - apply (induct wl) - apply (auto simp add: bl_to_bin_append) - apply (simp add: bl_to_bin_aux_alt sclem) - apply (simp add: bin_cat_foldl_lem [symmetric]) - done - -lemma bin_last_bl_to_bin: "bin_last (bl_to_bin bs) \ bs \ [] \ last bs" -by(cases "bs = []")(auto simp add: bl_to_bin_def last_bin_last'[where w=0]) - -lemma bin_rest_bl_to_bin: "bin_rest (bl_to_bin bs) = bl_to_bin (butlast bs)" -by(cases "bs = []")(simp_all add: bl_to_bin_def butlast_rest_bl2bin_aux) - -lemma bl_xor_aux_bin: - "map2 (\x y. x \ y) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = - bin_to_bl_aux n (v XOR w) (map2 (\x y. x \ y) bs cs)" - apply (induction n arbitrary: v w bs cs) - apply auto - apply (case_tac v rule: bin_exhaust) - apply (case_tac w rule: bin_exhaust) - apply clarsimp - done - -lemma bl_or_aux_bin: - "map2 (\) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = - bin_to_bl_aux n (v OR w) (map2 (\) bs cs)" - by (induct n arbitrary: v w bs cs) simp_all - -lemma bl_and_aux_bin: - "map2 (\) (bin_to_bl_aux n v bs) (bin_to_bl_aux n w cs) = - bin_to_bl_aux n (v AND w) (map2 (\) bs cs)" - by (induction n arbitrary: v w bs cs) simp_all - -lemma bl_not_aux_bin: "map Not (bin_to_bl_aux n w cs) = bin_to_bl_aux n (NOT w) (map Not cs)" - by (induct n arbitrary: w cs) auto - -lemma bl_not_bin: "map Not (bin_to_bl n w) = bin_to_bl n (NOT w)" - by (simp add: bin_to_bl_def bl_not_aux_bin) - -lemma bl_and_bin: "map2 (\) (bin_to_bl n v) (bin_to_bl n w) = bin_to_bl n (v AND w)" - by (simp add: bin_to_bl_def bl_and_aux_bin) - -lemma bl_or_bin: "map2 (\) (bin_to_bl n v) (bin_to_bl n w) = bin_to_bl n (v OR w)" - by (simp add: bin_to_bl_def bl_or_aux_bin) - -lemma bl_xor_bin: "map2 (\) (bin_to_bl n v) (bin_to_bl n w) = bin_to_bl n (v XOR w)" - using bl_xor_aux_bin by (simp add: bin_to_bl_def) - end diff -r 3f8e6c0166ac -r 6a2f43901350 src/HOL/Word/Word.thy --- a/src/HOL/Word/Word.thy Tue Aug 04 11:45:03 2020 +0100 +++ b/src/HOL/Word/Word.thy Wed Aug 05 17:50:00 2020 +0100 @@ -1000,19 +1000,13 @@ is xor by simp -instance proof - fix a b :: \'a word\ and n :: nat - show \- a = NOT (a - 1)\ - by transfer (simp add: minus_eq_not_minus_1) - show \bit (NOT a) n \ (2 :: 'a word) ^ n \ 0 \ \ bit a n\ - by transfer (simp add: bit_not_iff) - show \bit (a AND b) n \ bit a n \ bit b n\ - by transfer (auto simp add: bit_and_iff) - show \bit (a OR b) n \ bit a n \ bit b n\ - by transfer (auto simp add: bit_or_iff) - show \bit (a XOR b) n \ bit a n \ bit b n\ - by transfer (auto simp add: bit_xor_iff) -qed +lift_definition mask_word :: \nat \ 'a word\ + is mask + . + +instance by (standard; transfer) + (auto simp add: minus_eq_not_minus_1 mask_eq_exp_minus_1 + bit_not_iff bit_and_iff bit_or_iff bit_xor_iff) end @@ -1170,8 +1164,13 @@ by (simp add: shiftr_word_eq) lemma [code]: - \take_bit n a = a AND mask n\ for a :: \'a::len word\ - by (fact take_bit_eq_mask) + \uint (take_bit n w) = (if n < LENGTH('a::len) then take_bit n (uint w) else uint w)\ + for w :: \'a::len word\ + by transfer (simp add: min_def) + +lemma [code]: + \uint (mask n :: 'a::len word) = mask (min LENGTH('a) n)\ + by transfer simp lemma [code_abbrev]: \push_bit n 1 = (2 :: 'a::len word) ^ n\ @@ -1289,9 +1288,6 @@ is \\b k. take_bit LENGTH('a) k div 2 + of_bool b * 2 ^ (LENGTH('a) - Suc 0)\ by (fact arg_cong) -lift_definition mask :: \nat \ 'a::len word\ - is \take_bit LENGTH('a) \ Bit_Operations.mask\ . - lemma sshiftr1_eq: \sshiftr1 w = word_of_int (bin_rest (sint w))\ by transfer simp @@ -1328,7 +1324,7 @@ qed lemma mask_eq: - \mask n = (1 << n) - 1\ + \mask n = (1 << n) - (1 :: 'a::len word)\ by transfer (simp add: mask_eq_exp_minus_1 push_bit_of_1) lemma uint_sshiftr_eq [code]: @@ -1977,18 +1973,8 @@ lemma nth_ucast: "(ucast w::'a::len word) !! n = (w !! n \ n < LENGTH('a))" by transfer (simp add: bit_take_bit_iff ac_simps) -context - includes lifting_syntax -begin - -lemma transfer_rule_mask_word [transfer_rule]: - \((=) ===> pcr_word) Bit_Operations.mask Bit_Operations.mask\ - by (simp only: mask_eq_exp_minus_1 [abs_def]) transfer_prover - -end - lemma ucast_mask_eq: - \ucast (Bit_Operations.mask n :: 'b word) = Bit_Operations.mask (min LENGTH('b::len) n)\ + \ucast (mask n :: 'b word) = mask (min LENGTH('b::len) n)\ by (simp add: bit_eq_iff) (auto simp add: bit_mask_iff bit_ucast_iff exp_eq_zero_iff) \ \literal u(s)cast\ @@ -4075,27 +4061,23 @@ subsubsection \Mask\ lemma minus_1_eq_mask: - \- 1 = (Bit_Operations.mask LENGTH('a) :: 'a::len word)\ + \- 1 = (mask LENGTH('a) :: 'a::len word)\ by (rule bit_eqI) (simp add: bit_exp_iff bit_mask_iff exp_eq_zero_iff) - -lemma mask_eq_mask [code]: - \mask = Bit_Operations.mask\ - by (rule ext, transfer) simp lemma mask_eq_decr_exp: - \mask n = 2 ^ n - 1\ - by (simp add: mask_eq_mask mask_eq_exp_minus_1) + \mask n = 2 ^ n - (1 :: 'a::len word)\ + by (fact mask_eq_exp_minus_1) lemma mask_Suc_rec: - \mask (Suc n) = 2 * mask n + 1\ - by (simp add: mask_eq_mask mask_eq_exp_minus_1) + \mask (Suc n) = 2 * mask n + (1 :: 'a::len word)\ + by (simp add: mask_eq_exp_minus_1) context begin qualified lemma bit_mask_iff: \bit (mask m :: 'a::len word) n \ n < min LENGTH('a) m\ - by (simp add: mask_eq_mask bit_mask_iff exp_eq_zero_iff not_le) + by (simp add: bit_mask_iff exp_eq_zero_iff not_le) end @@ -4188,7 +4170,8 @@ lemmas and_mask_less' = iffD2 [OF word_2p_lem and_mask_lt_2p, simplified word_size] -lemma and_mask_less_size: "n < size x \ x AND mask n < 2^n" +lemma and_mask_less_size: "n < size x \ x AND mask n < 2 ^ n" + for x :: \'a::len word\ unfolding word_size by (erule and_mask_less') lemma word_mod_2p_is_mask [OF refl]: "c = 2 ^ n \ c > 0 \ x mod c = x AND mask n" @@ -4212,6 +4195,7 @@ by (auto simp: and_mask_wi' word_of_int_homs word.abs_eq_iff bintrunc_mod2p mod_simps) lemma mask_power_eq: "(x AND mask n) ^ k AND mask n = x ^ k AND mask n" + for x :: \'a::len word\ using word_of_int_Ex [where x=x] by (auto simp: and_mask_wi' word_of_int_power_hom word.abs_eq_iff bintrunc_mod2p mod_simps) @@ -5365,10 +5349,6 @@ "(1 :: 'a :: len word) !! n \ 0 < LENGTH('a) \ n = 0" by simp -lemma mask_0 [simp]: - "mask 0 = 0" - by (simp add: Word.mask_def) - lemma shiftl0: "x << 0 = (x :: 'a :: len word)" by (fact shiftl_x_0) @@ -5379,7 +5359,7 @@ lemma mask_Suc_0: "mask (Suc 0) = 1" using mask_1 by simp -lemma mask_numeral: "mask (numeral n) = 2 * mask (pred_numeral n) + 1" +lemma mask_numeral: "mask (numeral n) = 2 * mask (pred_numeral n) + (1 :: 'a::len word)" by (simp add: mask_Suc_rec numeral_eq_Suc) lemma bin_last_bintrunc: "bin_last (bintrunc l n) = (l > 0 \ bin_last n)" diff -r 3f8e6c0166ac -r 6a2f43901350 src/HOL/ex/Word.thy --- a/src/HOL/ex/Word.thy Tue Aug 04 11:45:03 2020 +0100 +++ b/src/HOL/ex/Word.thy Wed Aug 05 17:50:00 2020 +0100 @@ -644,19 +644,12 @@ is xor by simp -instance proof - fix a b :: \'a word\ and n :: nat - show \- a = NOT (a - 1)\ - by transfer (simp add: minus_eq_not_minus_1) - show \bit (NOT a) n \ (2 :: 'a word) ^ n \ 0 \ \ bit a n\ - by transfer (simp add: bit_not_iff) - show \bit (a AND b) n \ bit a n \ bit b n\ - by transfer (auto simp add: bit_and_iff) - show \bit (a OR b) n \ bit a n \ bit b n\ - by transfer (auto simp add: bit_or_iff) - show \bit (a XOR b) n \ bit a n \ bit b n\ - by transfer (auto simp add: bit_xor_iff) -qed +lift_definition mask_word :: \nat \ 'a word\ + is mask . + +instance by (standard; transfer) + (auto simp add: minus_eq_not_minus_1 mask_eq_exp_minus_1 + bit_not_iff bit_and_iff bit_or_iff bit_xor_iff) end diff -r 3f8e6c0166ac -r 6a2f43901350 src/Pure/Concurrent/future.ML --- a/src/Pure/Concurrent/future.ML Tue Aug 04 11:45:03 2020 +0100 +++ b/src/Pure/Concurrent/future.ML Wed Aug 05 17:50:00 2020 +0100 @@ -27,7 +27,7 @@ val default_params: params val forks: params -> (unit -> 'a) list -> 'a future list val fork: (unit -> 'a) -> 'a future - val get_finished: 'a future -> 'a + val get_result: 'a future -> 'a Exn.result val join_results: 'a future list -> 'a Exn.result list val join_result: 'a future -> 'a Exn.result val joins: 'a future list -> 'a list @@ -320,11 +320,14 @@ val max_active0 = ! max_active; val max_workers0 = ! max_workers; + val workers_waiting = count_workers Waiting; + val m = if ! do_shutdown andalso Task_Queue.all_passive (! queue) then 0 else Multithreading.max_threads (); val _ = max_active := m; - val _ = max_workers := 2 * m; + val _ = max_workers := + Int.max (2 * m, if workers_waiting > 0 then workers_waiting + 1 else 0); val missing = ! max_workers - length (! workers); val _ = @@ -508,8 +511,6 @@ | exns => Exn.Exn (Par_Exn.make exns)) else res); -fun get_finished x = Exn.release (get_result x); - local fun join_next atts deps = (*requires SYNCHRONIZED*) diff -r 3f8e6c0166ac -r 6a2f43901350 src/Pure/Concurrent/lazy.ML --- a/src/Pure/Concurrent/lazy.ML Tue Aug 04 11:45:03 2020 +0100 +++ b/src/Pure/Concurrent/lazy.ML Wed Aug 05 17:50:00 2020 +0100 @@ -103,7 +103,7 @@ let val res0 = Exn.capture (restore_attributes e) (); val _ = Exn.capture (fn () => Future.fulfill_result x res0) (); - val res = Future.join_result x; + val res = Future.get_result x; val _ = if not (Exn.is_interrupt_exn res) then Synchronized.assign var (Result (Future.value_result res))