# HG changeset patch # User nipkow # Date 1476703238 -7200 # Node ID 3faa948dc861bf07d8942f3d5b3ae544fb5c067a # Parent b9a1486e79be0124d540d4858e0a7a89137d2bfd updated to setsum -> sum diff -r b9a1486e79be -r 3faa948dc861 src/Doc/Prog_Prove/Bool_nat_list.thy --- a/src/Doc/Prog_Prove/Bool_nat_list.thy Mon Oct 17 11:46:22 2016 +0200 +++ b/src/Doc/Prog_Prove/Bool_nat_list.thy Mon Oct 17 13:20:38 2016 +0200 @@ -453,9 +453,9 @@ \end{exercise} \begin{exercise} -Define a recursive function @{text "sum ::"} @{typ"nat \ nat"} such that -\mbox{@{text"sum n"}} @{text"="} @{text"0 + ... + n"} and prove -@{prop" sum(n::nat) = n * (n+1) div 2"}. +Define a recursive function @{text "sum_upto ::"} @{typ"nat \ nat"} such that +\mbox{@{text"sum_upto n"}} @{text"="} @{text"0 + ... + n"} and prove +@{prop" sum_upto (n::nat) = n * (n+1) div 2"}. \end{exercise} *} (*<*)