# HG changeset patch # User huffman # Date 1180643030 -7200 # Node ID 40a760921d94a7f81412383725d1c422892af0f3 # Parent 267ba70e7a9dcab574c7b9dd861a75a3f5f19898 simplify some proofs diff -r 267ba70e7a9d -r 40a760921d94 src/HOL/Hyperreal/Transcendental.thy --- a/src/HOL/Hyperreal/Transcendental.thy Thu May 31 21:09:14 2007 +0200 +++ b/src/HOL/Hyperreal/Transcendental.thy Thu May 31 22:23:50 2007 +0200 @@ -580,9 +580,7 @@ = (if even n then (- 1) ^ (n div 2)/(real (fact n)) else 0)" -by (auto intro!: ext - simp add: diffs_def divide_inverse real_of_nat_def - simp del: mult_Suc of_nat_Suc) +by (simp only: sin_fdiffs) lemma cos_fdiffs: "diffs(%n. if even n then @@ -599,9 +597,7 @@ (- 1) ^ (n div 2)/(real (fact n)) else 0) n = - (if even n then 0 else (- 1) ^ ((n - Suc 0)div 2)/(real (fact n)))" -by (auto intro!: ext - simp add: diffs_def divide_inverse odd_Suc_mult_two_ex real_of_nat_def - simp del: mult_Suc of_nat_Suc) +by (simp only: cos_fdiffs) text{*Now at last we can get the derivatives of exp, sin and cos*} @@ -1254,12 +1250,10 @@ (if even k then 0 else (- 1) ^ ((k - Suc 0) div 2) / real (fact k)) * x ^ k) - sums - (\n. (if even n then 0 - else (- 1) ^ ((n - Suc 0) div 2) / real (fact n)) * - x ^ n)" + sums sin x" + unfolding sin_def by (rule sin_converges [THEN sums_summable, THEN sums_group], simp) - thus ?thesis by (simp add: mult_ac sin_def) + thus ?thesis by (simp add: mult_ac) qed lemma sin_gt_zero: "[|0 < x; x < 2 |] ==> 0 < sin x" @@ -1323,11 +1317,10 @@ have "(\n. \k = n * 2..n. (if even n then (- 1) ^ (n div 2) / real (fact n) else 0) * - x ^ n)" + sums cos x" + unfolding cos_def by (rule cos_converges [THEN sums_summable, THEN sums_group], simp) - thus ?thesis by (simp add: mult_ac cos_def) + thus ?thesis by (simp add: mult_ac) qed declare zero_less_power [simp]